"Sarbe Bhabantu Sukhinah"
  • Home
  • Research
    • Research Nuggets
    • Funding
    • Fun Stuff
    • Structure Gallery
  • Team
    • Alumna/ Alumni
    • Collaborators
    • Student Awards
    • How to Join Us?
  • Publications
    • Proceedings & IPRs
    • Covers & Theses
  • Facilities
    • MRC Facilities
    • Institute Facilities
    • External Facilities
    • FaMaL Floor Plan
  • Teaching
    • Research Talks
    • Invited Talks
    • Research Workshops
  • Gallery
    • News
  • Links
    • Chemistry Resources
    • Safety Resources
    • Tao Art
  • Contact
  • Prabeer
    • Inspiration
    • Awards & Honours
    • Books I Love
    • Travelogues
    • Bohemian Nomad
Picture

"......... Tamaso Maa Jyotirgamaya".  
"Try not to become a man of success, but rather try to become a man of values."----- Albert Einstein   
___________________________________________________________________________________________________________  

Cover Images Gallery
Picture

Monographs
Picture
 MG3.  "Physical and electrochemical investigation of halide modified activated carbons",
          P. Barpanda,
          Ph. D. Thesis, Rutgers University, New Jersey, USA. [December 2008]
         Advisor: Prof. Glenn G. Amatucci

Picture
  MG2.  "Phase-diagram of chain-of ferromagnetic Fe-Ni nanosphere: A micromagnetic study",
           P. Barpanda,
           M. Phil. Thesis, The University of Cambridge, UK. [October 2004]

           Advisor: Prof. Rafal E. Dunin-Borkowski

Picture
 MG1.  "Auto-combustion synthesis of Mag-Al spinel: Structural ordering and densification kinetics",
          P. Barpanda,
          B. Engg. Thesis, National Institute of Technology Rourkela, Bharat. [May 2002]
          Advisor: Prof. Santanu Bhattacharya and Prof. Swadesh Pratihar 

Book (Chapter)s:
Picture
BC03.  "Development of polyanionic sodium-ion battery insertion materials",
         S. Singh, S.P. Vanam, S. Lochab, M. Fichtner, P. Barpanda,
        Comprehensive Inorganic Chemistry- III, Vol 7, pp. 241-271.
         Editors: K. Stevenson, E. Antipov, A. Abakumov,
         Editors-in-Chief: J. Reedijk, K.R. Poeppelmeier,  
         Oxford, Elsevier Publications, 2023. [ISBN: 978-0-128-23153-1]

Picture
BC02.  "Chapter-7: Fluorine-based polyanionic compounds for high-voltage electrode materials",
         P. Barpanda, J.M. Tarascon,
        Lithium Batteries: Advanced Technologies and Applications.
        Wiley Publications, 2013.
         Editors: B. Scrosati, K.M. Abraham, W. van Schalkwijk, J. Hassoun
 

Picture
BC01.   "Carbon-halide nanocomposites: Structure, morphology and electrochemistry",
         P. Barpanda,
         VDM-Verlag Publications, 2009.
        [ISBN: 978-3-639-12061-5]

Journal Articles:
J150.  "Robust oxygen evolution on Ni-doped MoO3: Overcoming activity-stability tradeoff in alkaline water splitting",
        A.K. Verma, S. Atif, A. Padhy, T.S. Choksi, P. Barpanda, A. Govind Rajan,

        Chem & Bio Engineering, x(xx), xxxx-xxxx, 2025.
       DOI: https://doi.org/10.1021/cbe.4c00160
        Keywords: MoO3, DFT+U, doping, oxygen evolution reaction, water splitting
        [Invited Article] [Virtual Special Issue: Electrochemical Engineering for Sustainability]

J149.  "Na0.5Bi0.5TiO3 perovskite anode for lithium-ion battery",
        S. Chintha, S. Atif, A. Chaupatnaik, A. Golubnichiy, A.M. Abakumov, P. Barpanda,

        Sustainable Energy & Fuels, 8(21), 5058-5064, 2024.
       DOI: https://doi.org/10.1039/D4SE00953E
        Keywords: Li-ion batteries, anodes, perovskites, Bi-based oxides, conversion-alloying
        [Invited Article]


J148.  "Perovskite oxides with Pb at B-site as Li-ion battery anodes",
        S. Atif, A. Chaupatnaik, A. Rao, A. Padhy, S. Chintha, P. Nukala, M. Fichtner, P. Barpanda,

        Electrochimica Acta, 502, 144838, 2024.
       DOI: https://doi.org/10.1016/j.electacta.2024.144838
        Keywords: Li-ion batteries, anodes, perovskites, conversion, alloying, electron microscopy

J147.  "An alternative polymorph of the hydroxysulfate LixFeSO4OH yields improved lithium-ion cathodes",
        S. Singh, A. Chakraborty, A. Neveu, P.K. Jha, V. Pralong, M. Fichtner, M.S. Islam, P. Barpanda,

        Chemistry of Materials, 36(16), 8088-8097, 2024.
       DOI: https://doi.org/10.1021/acs.chemmater.4c01652
        Keywords: Li-ion battery, polyanion cathode, low-cost cathode, operando techniques, computational modelling

J146.  "Chimie douce derived novel P2-type layered oxide for potassium-ion batteries",
        P.K. Jha, A. Golubnichiy, D. Sachdeva, A. Banerjee, G.S. Gautam, M. Fichtner, A.M. Abakumov, P. Barpanda,

        Advanced Functional Materials, 34(41), 2410665, 2024.
       DOI: https://doi.org/10.1002/adfm.202410665
        Keywords: potassium-ion batteries, cathodes, chimie douce, P2 layer oxides, energy storage
        [Invited Article] [Highlighted in Cover Image]


J145.  "A 3.2 V binary layered oxide cathode for potassium-ion batteries",
        P.K. Jha, S.K. Parate, K. Sada, K. Yoshii, T. Masese, P. Nukala, G.S. Gautam, V. Pralong, M. Fichtner, P. Barpanda,

        Small, 20(37), 2402204, 2024.
       DOI: https://doi.org/10.1002/smll.202402204
        Keywords: potassium-ion batteries, cathodes, P3-type layered oxides, energy storage
        [Highlighted in Cover Image]

J144.  "Bifunctional strontium cobalt molybdenum oxide (Sr2CoMoO6) perovskite as an efficient catalyst for electrochemical water
        splitting reactions in alkaline media"
,

        S. Atif, A. Padhy, P.K. Jha, D. Sachdeva, P. Barpanda,

        ChemCatChem, 16(17), e202400217, 2024.
       DOI: https://doi.org/10.1002/cctc.202400217
        Keywords: water splitting, oxygen evolution reaction, hydrogen evolution reaction, perovskite, bifunctional electrocatalyst 
        [Invited Article] [Hot Topics: Water Splitting Society Volumes: Germany] [Highlighted in Cover Image]

J143.  "Unveiling the degradation mechanism of sodium ion batteries based on Na4Fe3(PO4)2P2O7 cathode and hard carbon anode
        suggests anode particle size reduction for cycling stability"
,

        S. Lochab, S. Bharathraj, K.S. Mayya, P. Barpanda, S.P. Adiga,

        Batteries & Supercaps, 7(8), e202400025, 2024.
       DOI: https://doi.org/10.1002/batt.202400025
        Keywords: sodium ion batteries, mixed phosphate cathode, hard carbon, single particle modeling, cycling stability
        [Highlighted in Cover Image]


J142.  "High-entropy materials for sodium-ion batteries",
        G. Caroline, N. Nair, S.V. Nair, P. Barpanda, B. Senthilkumar,

        Next Sustainability, 4, 100044, 2024.
       DOI: https://doi.org/10.1016/j.nxsust.2024.100044
        Keywords: sodium-ion batteries, capacity, high-entropy, cathodes, layered metal oxides
        [Invited Review Article]

J141.  "Role of Co content on the electrode properties of P3-type K0.5Mn1-xCoxO2 potassium insertion materials",
        P.K. Jha, P. Barpanda,

        Inorganic Chemistry, 63(16), 7137-7145, 2024.
       DOI: https://doi.org/10.1021/acs.inorgchem.3c03747
        Keywords: potassium-ion batteries, cathodes, P3 type oxides, capacity
        [Highlighted in Cover Image]

J140.  "
Single crystal P2-type Na0.67Mn0.67Ni0.33O2 sodium insertion material with improved cycling stability",
        V. Pamidi, C. Naranjo, S. Fuchs, H.S. Stein, T. Diemant, Y. Li et al., Y. Hu, S. Trivedi, M.A. Reddy, P. Barpanda, M. Fichtner, 
        ACS Applied Materials & Interfaces, 16(20), 25953-25965, 2024.
       DOI: https://doi.org/10.1021/acsami.3c15348
        Keywords: sodium-ion batteries, layered oxides, single crystal cathodes, inorganic aqueous binders, thermal stability

J139.  "Phosphate-based polyanionic insertion materials for oxygen electrocatalysis",
        R. Gond, J. Zhu, P. Barpanda,

        Materials Chemistry Frontiers, 8(5), 1153-1170, 2024.
       DOI: https://doi.org/10.1039/D3QM01088K
        Keywords: electrocatalysis, oxygen reduction, oxygen evolution, polyanions, phosphates
        [Invited Article] [2024 Themed Collection of Review Articles] [Highlighted in Outside Front Cover Image]

J138.  "Greener, safer and better performing aqueous binder for positive electrode manufacturing of sodium ion batteries",
        R. Xu, V. Pamidi, Y. Tang, S. Fuchs, H. Stein, B. Dasari, Z. Zhao, S. Behara, Y. Hu, S. Trivedi, M. Reddy, P. Barpanda, M. Fichtner,

        ChemSusChem, 17(8), e202301154, 2024.
       DOI: https://doi.org/10.1002/cssc.202301154
        Keywords: inorganic binders, aqueous binders, surface coatings, lithium-ion batteries, sodium-ion batteries
        [Special Issue: Post-Lithium Storage - Shaping the future]


J137.  "Water-soluble inorganic binders for lithium-ion and sodium-ion batteries",
        S. Trivedi, V. Pamidi, S.P. Bautista, F.N.A. Shamsudin, M. Weil, P. Barpanda, D. Bresser, M. Fichtner,

        Advanced Energy Materials, 14(9), 2303338, 2024.
       DOI: https://doi.org/10.1002/aenm.202303338
        Keywords: inorganic binders, aqueous binders, surface coatings, lithium-ion batteries, sodium-ion batteries
        [Special Issue: Post-Lithium Storage - Shaping the future] [Highlighted in Inside Back Cover Image]


J136.  "Iron-based fluorophosphate Na2FePO4F as a cathode for aqueous zinc-ion batteries",
        D. Singh, Y. Hu, S.S. Meena, R. Vengarathody, M. Fichtner, P. Barpanda,

        Chemical Communications, 59(97), 14391-14394, 2023.
       DOI: https://doi.org/10.1039/D3CC04940J
        Keywords: zinc-ion batteries, cathodes, polyanions, fluorophosphate, spectroscopy
        [Highlighted in Inside Cover Image]


J135.  "Evaluation of P3-type layered oxides as K-ion battery cathodes",
        P.K. Jha, S.N. Totade, P. Barpanda, G.S. Gautam,

        Inorganic Chemistry, 62(37), 14971-14979, 2023.
       DOI: https://doi.org/10.1021/acs.inorgchem.3c01686
        Keywords: batteries, cathodes, P3 layered oxides, phase stability, DFT calculations

J134.  "Zinc substituted cobalt phosphate [ZnCo2(PO4)2] as a bifunctional electrocatalyst",
        D. Singh, S. Singh, P.K. Prasanna, R.K. Rai, P. Chirawatkul, S. Chakraborty, M. Fichtner, P. Barpanda,

        Inorganic Chemistry, 62(31), 12345-12355, 2023.
       DOI: https://doi.org/10.1021/acs.inorgchem.3c01367
        Keywords: cobalt phosphate, bifunctional electrocatalysts, ORR, OER, DFT calculations
        [Highlighted in Cover Image]


J133.  "Calorimetric study of mixed phosphates Na4M3(PO4)2P2O7 (M = Mn, Fe, Co, Ni) to evaluate the electrochemical trends",
        K. Jayanthi, S. Lochab, P. Barpanda, A. Navrotsky,

        Journal of Physical Chemistry C, 127(24), 11700-11706, 2023.
       DOI: https://doi.org/10.1021/acs.jpcc.3c01975
        Keywords: calorimetry, Na-ion batteries, cathodes, phosphates, energetics

J132.  "P3 type layered oxide frameworks: An appealing family of insertion materials for K-ion batteries",
        P.K. Jha, V. Pralong, M. Fichtner, P. Barpanda,

        Current Opinion in Electrochemistry, 38, 101216, 2023.
       DOI: https://doi.org/10.1016/j.coelec.2023.101216
        Keywords: K-ion batteries, cathodes, layered oxides, P3 frameworks
        [Special Issue: Emerging Materials and Designs for Energy Storage] [Invited Article] [Highlighted in Front Cover Image]


J131.  "Eldfellite NaV(SO4)2 as a versatile cathode insertion host for Li-ion and Na-ion batteries",
        S. Singh, D. Singh, R. Ahuja, M. Fichtner, P. Barpanda,

        Journal of Materials Chemistry A, 11(8), 3975-3986, 2023.
       DOI: https://doi.org/10.1039/D2TA03673H
        Keywords: batteries, cathodes, eldfellite, polyanions, capacity, DFT
​        [Highlighted in Inside Front Cover Image]

J130.  "A new high voltage alluaudite sodium battery insertion material",
        P. Barman, P.K. Jha, A. Chaupatnaik, K. Jayanthi, R. Prasada Rao, G.S. Gautam, S. Franger, A. Navrotsky, P. Barpanda, 

        Materials Today Chemistry, 27, 101316, 2023.
       DOI: https://doi.org/10.1016/j.mtchem.2022.101316
        Keywords: batteries, cathodes, alluaudite, molybdates, ionic conductivity, high-voltage
        [Special Issue: E-MRS Spring Meeting 2022 Symposium G Special Issue]


J129.  "Probing capacity trends in MLi2Ti6O14 lithium-ion battery anodes using calorimetric studies",
        K. Jayanthi, A. Chaupatnaik, P. Barpanda, A. Navrotsky,

        ACS Omega, 7(46), 42482-42488, 2022.
       DOI: https://doi.org/10.1021/acsomega.2c05701
        Keywords: calorimetry, Li-ion batteries, anodes, titanates, energetics

J128.  "First principles investigation of anionic redox in bisulfate lithium battery cathodes",
        P.K. Jha, S. Singh, M. Shrivastava, P. Barpanda, G.S. Gautam,

        Physical Chemistry Chemical Physics, 24(37), 22756-22767, 2022.
       DOI: https://doi.org/10.1039/D2CP00473A
        Keywords: Li-ion batteries, cathodes, bisulfates, DFT calculations, anionic redox

J127.  "A molybdenum doped layer-spinel composite cathode material for sodium-ion battery",
        S.P. Vanam, P. Barpanda,

        Electrochimica Acta, 431, 141122, 2022.
       DOI: https://doi.org/10.1016/j.electacta.2022.141122
        Keywords: sodium-ion battery, P2-layer/spinel composite, P2-P2'' phase transition
        [Special Issue: Recent Advances in Sodium Ion Batteries]


J126.  "Pyrophosphate Na2CoP2O7 polymorphs as efficient bifunctional oxygen electrocatalysts for zinc-air batteries",
        R. Gond, S. Singh, X. Zhao, D. Singh, R. Ahuja, M. Fichtner, P. Barpanda,

        ACS Applied Materials & Interfaces, 14(36), 40761-40770, 2022.
       DOI: https://doi.org/10.1021/acsami.2c06944
        Keywords: cobalt pyrophosphates, bifunctional electrocatalysts, ORR, OER, DFT calculations, zinc-air battery

J125.  "Facile synthesis and phase stability of Cu-based Na2Cu(SO4)2.xH2O (x = 0-2) sulfate minerals as
        conversion type battery electrodes"
,

        S. Singh, A. Neveu, K. Jayanthi, T. Das, S. Chakraborty, A. Navrotsky, V. Pralong, P. Barpanda,

        Dalton Transactions, 51(29), 11169-11179, 2022.
       DOI: https://doi.org/10.1039/D2DT01830`F
        Keywords: sulfate cathode, saranchinite, krohnkite, conversion reaction, cathode, battery

J124.  "Bio-waste derived highly porous N-doped carbon as low-cost bifunctional electrocatalyst for hybrid sodium-air batteries",
        C. Murugesan, B. Senthilkumar, P. Barpanda,

        ACS Sustainable Chemistry & Engineering, 10(28), 9077-9086, 2022.
       DOI: https://doi.org/10.1021/acssuschemeng.2c01300
        Keywords: bio-waste, highly porous carbon, N/S doping, bifunctional electrocatalyst, hybrid Na-air battery
        [Highlighted in Cover Image]

J123.  "Aqueous spray-drying synthesis of alluaudite Na2+2xFe2-x(SO4)3 sodium insertion material:
        Studies of electrochemical activity, thermodynamic stability and humidity induced phase transformation"
,

        P. Barman, D. Dwibedi, K. Jayanthi, S.S. Meena, S. Nagendran, A. Navrotsky, P. Barpanda,

        Journal of Solid State Electrochemistry, 26(9), 1941-1950, 2022.
       DOI: https://doi.org/10.1007/s10008-022-05142-w
        Keywords: sodium-ion battery, cathode, alluaudite, capacity, phase transition
        [Special issue in celebration of the 70th birthday of Prof. Doron Aurbach]

J122.  "Manganese-based tunnel type cathode materials for secondary Li-ion and K-ion batteries",
        S.P. Vanam, B. Senthilkumar, P. Amonpattaratkit, P. Barpanda,

        Inorganic Chemistry, 61(9), 3959-3969, 2022.
       DOI: https://doi.org/10.1021/acs.inorgchem.1c03609
        Keywords: Li-ion battery, K-ion battery, tunnel-type Na0.44MnO2, structure, capacity

J121.  "Potassium cobalt pyrophosphate as a non-precious bifunctional electrocatalyst for zinc-air batteries",
        K. Sada, R. Gond, N. Bothra, S.K. Pati, P. Barpanda,

       ACS Applied Materials & Interfaces, 14(7), 8992-9001, 2022.
       DOI: https://doi.org/10.1021/acsami.1c21481
        Keywords: cobalt pyrophosphate, bifunctional electrocatalyst, ORR, OER, zinc-air batteries

J120.  "Magnetic structure of fluorophosphate Na2MnPO4F sodium battery material",
        S. Lochab, S. Rayaprol, M. Avdeev, L. Sharma, P. Barpanda,

       Journal of Solid State Chemistry, 308, 122926, 2022.
       DOI: https://doi.org/10.1016/j.jssc.2022.122926
        Keywords: magnetic structure, neutron powder diffraction, sodium battery, fluorophosphate, Na2MnPO4F

J119.  "Structural change induced by electrochemical sodium extraction from layered O'3-NaMnO2",
        K. Kubota, M. Miyazai, E.J. Kim, H. Yoshida, P. Barpanda, S. Komaba,

       Journal of Materials Chemistry A, 9(47), 26810-26819, 2021.
       DOI: https://doi.org/10.1039/D1TA05390F
        Keywords: sodium-ion batteries, layered O'3-NaMnO2, in-situ X-ray diffraction, cycling stability

J118.  "Crystal and magnetic structures of monoclinic FeOHSO4",
        M. Avdeev, S. Singh, P. Barpanda, C.D. Ling,

       Inorganic Chemistry, 60(20), 15128-15130, 2021.
       DOI: https://doi.org/10.1021/acs.inorgchem.1c02544
        Keywords: crystal structure, magnetic properties, magnetic structure, neutron diffraction, hydroxysulfate

J117.  "Cobalt tetraphosphate as an efficient bifunctional electrocatalyst for hybrid sodium-air batteries",
        C. Murugesan, S.P. Panjalingam, S. Lochab, R.K. Rai, X.F. Zhao, D. Singh, R. Ahuja, P. Barpanda,

       Nano Energy, 89(B), 106485, 2021.
       DOI: https://doi.org/10.1016/j.nanoen.2021.106485
        Keywords: cobalt tetraphosphate, bifunctional electrocatalyst, NASICON, OER, ORR, hybrid Na-air batteries

J116.  "An overview of hydroxy-based polyanionic cathode insertion materials for metal-ion batteries",
        S. Singh, S. Lochab, L. Sharma, V. Pralong, P. Barpanda,

       Physical Chemistry Chemical Physics, 23(34), 18283-18299, 2021.
       DOI: https://doi.org/10.1039/D1CP01741A
        Keywords: batteries, cathodes, polyanions, hydroxy-based insertion materials, capacity
​        [Invited Perspective Article] [Themed Collection of Perspectives]

J115.  "Marinite Li2Ni(SO4)2 as a new member of bisulfate family of high-voltage lithium battery cathodes",
        S. Singh, P.K. Jha, M. Avdeev, W. Zhang, K. Jayanthi, A. Navrotsky, H. N. Alshareef, P. Barpanda,

       Chemistry of Materials, 33(15), 6108-6119, 2021.
       DOI: https://doi.org/10.1021/acs.chemmater.1c01669
        Keywords: Li-ion battery, cathode, bisulfates, crystallography, DFT, calorimetry

J114.  "Cobalt metaphosphates as economic bifunctional electrocatalysts for hybrid sodium-air batteries",
        C. Murugesan, M. Musthafa, S. Lochab, P. Barpanda,

       Inorganic Chemistry, 60(16), 11974-11983, 2021.
       DOI: https://doi.org/10.1021/acs.inorgchem.1c01009
        Keywords: hybrid Na-air battery, electrocatalysts, bifunctionality, metaphosphates
     
J113.  "Perovskite lead-based oxide anodes for rechargeable batteries",
        A. Chaupatnaik, P. Barpanda,

       Electrochemistry Communications, 127, 107038, 2021.
       DOI: https://doi.org/10.1016/j.elecom.2021.107038
        Keywords: battery, anode materials, perovskite, PbTiO3
        [Invited Article]

J112.  "Performance evaluation of LiFePO4OH cathode for stationary storage applications using a reduced order
        electrochemical model"
,

        L. Sharma, S. Bharathraj, P. Barpanda, S.P. Adiga, K.S. Mayya,

       ACS Applied Energy Materials, 4(1), 1021-1032, 2021.
       DOI: https://doi.org/10.1021/acsaem.0c03049
        Keywords: Li-ion battery, hydroxyphosphate, electrochemical modeling, Co-free cathodes, cycling efficiency, Ragone plots

J111.  "Electrochemical insertion of potassium ions in
Na4Fe3(PO4)2P2O7 mixed phosphate",
        B. Senthilkumar, C. Murugesan, K. Sada, P. Barpanda,
       
Journal of Power Sources, 480, 228794, 2020.
       DOI: https://doi.org/10.1016/j.jpowsour.2020.228794
        Keywords: potassium-ion batteries, Na4Fe3(PO4)2P2O7, 3D pathway, cathode, mixed polyanion, capacity

J110.  "Metal fluorophosphate polyanionic insertion hosts as efficient bifunctional electrocatalysts for oxygen evolution
        and reduction reactions"
,

        L. Sharma, N. Bothra, R.K. Rai, S. Pati, P. Barpanda,
       
Journal of Materials Chemistry A, 8(36), 18651-18658, 2020.
       DOI: https://doi.org/10.1039/D0TA05880G
        Keywords: electrocatalysis, bifunctionality, metal-air batteries, polyanion, fluorophosphates
        [Highlighted in Inside Front Cover Image]

J109.  "Fluorophosphates: Next generation cathode materials for rechargeable batteries",
        L. Sharma, S.P. Adiga, H.N. Alshareef, P. Barpanda,
       
Advanced Energy Materials, 10(43), 2001449, 2020.
       DOI: https://doi.org/10.1002/aenm.202001449
        Keywords: batteries, cathodes, polyanions, fluorophosphates, capacity, electrocatalysis
        [Hot Topic: Batteries and Supercapacitors]

​J108.  "Operando sodiation mechanistic study of a new antimony based intermetallic CoSb as high performance
        sodium ion battery anode"
,

        S. Sarkar, A. Chaupatnaik, S.D. Ramarao, U. Subbarao, P. Barpanda, S.C. Peter,
       
Journal of Physical Chemistry C, 124(29), 15757-15768, 2020.
       DOI: https://doi.org/10.1021/acs.jpcc.0c03556
        Keywords: sodium-ion battery, intermetallics, antimonide, ex-situ mechanism
​        [Special Issue "Hellmut Eckert Festschrift"]


J107.  "Design of zinc-substituted cobalt (pyro)phosphates as efficient bifunctional electrocatalysts for zinc-air batteries",
        A. Baby, D. Singh, C. Murugesan, P. Barpanda,
       
Chemical Communications, 56, 8400-8403, 2020.
       DOI: https://doi.org/10.1039/D0CC01631D
        Keywords: cobalt (pyro)phosphates, bifunctional, electrocatalyst, zinc-air battery

J106.  "Alluaudite battery cathodes",
        D. Dwibedi, P. Barpanda, A. Yamada,
       
Small Methods, 4(7), 2000051, 2020.
       DOI: https://doi.org/10.1002/smtd.202000051
        Keywords: alluaudite-based batteries, alluaudites, cathodes, secondary batteries
        [Invited Review]

J105.  "P3-type layered K0.48Mn0.4Co0.6O2: a novel cathode material for potassium-ion batteries",
        K. Sada, P. Barpanda,
       
Chemical Communications, 56(15), 2272-2275, 2020.
       DOI: https://doi.org/10.1039/C9CC06657H
        Keywords: potassium-ion battery, oxide cathodes, capacity, solid-solution redox mechanism

J104.  "Iron-based mixed phosphate Na4Fe3(PO4)2P2O7 thin films for sodium-ion micro-batteries",
        B. Senthilkumar, A. Rambabu, C. Murugesan, S.B. Krupanidhi, P. Barpanda,
       
ACS Omega, 5(13), 7219-7224, 2020.
       DOI: https://doi.org/10.1021/acsomega.9b03835
        Keywords: mixed polyanion, sodium-ion battery, thin film, capacity, pulsed laser deposition

J103.  "Potassium-ion intercalation in anti-NASICON-type iron molybdate Fe2(MoO4)3",
        B. Senthilkumar, R.K. Selvan, P. Barpanda,
       
Electrochemistry Communications, 110, 106617, 2020.
       DOI: https://doi.org/10.1016/j.elecom.2019.106617
        Keywords: potassium-ion batteries, polyanion, NASICON, iron molybdate, capacity

J102.  "Fluorophosphates as efficient bifunctional electrocatalysts for metal-air batteries",
        L. Sharma, R. Gond, B. Senthilkumar, A. Roy, P. Barpanda,
       
ACS Catalysis, 10(1), 43-50, 2020.
       DOI: https://doi.org/10.1021/acscatal.9b03686
        Keywords: fluorophosphates, bifunctional, electrocatalyst, air-battery, efficiency

J10`1.  "Revisiting the layered Na3Fe3(PO4)4 phosphate sodium insertion compound: Structure, magnetic and electrochemical study",
        G.S. Shinde, R. Gond, M. Avdeev, C.D. Ling, R. Prasada Rao, S. Adams, P. Barpanda,
       
Materials Research Express, 7, 014001, 2020.
       DOI: https://doi.org/10.1088/2053-1591/ab54f4
        Keywords: Na-ion batteries, cathode, Na3Fe3(PO4)4, layered structure, BVSE calculation       
        [Focus Issue on Materials Research in India] [Invited Article]

J100.  "Polymorphism and temperature-induced phase transitions of Na2CoP2O7",
        M. Avdeev, C.W. Wang, P. Barpanda, K. Fujii, M. Yashima,
       
Inorganic Chemistry, 58(24), 16823-16830, 2019.
       DOI: https://doi.org/10.1021/acs.inorgchem.9b03014
        Keywords: pyrophosphates, neutron diffraction, polymorphism, phase transitions

J099.  "Cryptomelane K1.33Mn8O16 as a cathode for rechargeable aqueous zinc-ion batteries",
        K. Sada, B. Senthilkumar, P. Barpanda,
       
Journal of Materials Chemistry A, 7, 23981-23988, 2019.
       DOI: https://doi.org/10.1039/C9TA05836B
        Keywords: aqueous zinc-ion batteries, cathode, cryptomelane, sonochemical synthesis, capacity       
        [2019 Emerging Investigators Themed Issue of Journal of Materials Chemistry A]

J098.  "Alluaudite NaCoFe2(PO4)3 as a 2.9 V cathode for sodium-ion batteries exhibiting bifunctional electrocatalytic activity",
        D. Dwibedi, R. Gond, P. Barpanda,
       
Chemistry of Materials, 31(18), 7501-7509, 2019.
       DOI: https://doi.org/10.1021/acs.chemmater.9b02220
        Keywords: sodium-ion batteries, alluaudite, bond valence sum analysis, diffusion, electrochemistry, electrocatalysis

J097.  "Na2MnP2O7 polymorphs as efficient bifunctional catalysts for oxygen reduction and oxygen evolution reactions",
        R. Gond, S.P. Vanam, P. Barpanda,
       
Chemical Communications, 55, 11595-11598, 2019.
       DOI: https://doi.org/10.1039/C9CC04680A
        Keywords: polymorphism, Na2MnP2O7, bifunctional electrocatalysts, oxygen reduction, oxygen evolution 

J096.  "Cobalt and nickel phosphates as multifunctional air-cathodes for rechargeable hybrid sodium-air battery applications",
        B. Senthilkumar, I. Ahmad, P. Barpanda,
       
ACS Applied Materials & Interfaces, 11(37), 33811-33818, 2019.
       DOI: https://doi.org/10.1021/acsami.9b09090
        Keywords: nickel cobalt phosphate, hybrid sodium-air battery, bifunctional electrocatalyst, aqueous electrolyte, NASICON 

J095.  "Structural and electrochemical investigation of binary Na2Fe1-xZnxP2O7 (O < x < 1) pyrophosphate cathodes for
        sodium-ion batteries"
,

        R. Gond, S.S. Meena, V. Pralong, P. Barpanda,

       Journal of Solid State Chemistry, 277, 329-336, 2019.
       DOI: https://doi.org/10.1016/j.jssc.2019.06.027
        Keywords: sodium-ion battery, pyrophosphate, solid-solution, cathode, (de)insertion

J094.  "Reactive template synthesis of Li1.2Mn0.54Ni0.13Co0.13O2 nanorod cathode for Li-ion batteries: Influence of temperature
        over structural and electrochemical properties"
,

        M. Vivekanantha, C. Senthil, T. Kesavan, T. Partheeban, M. Navaneethan, B. Senthilkumar, P. Barpanda, M. Sasidharan,

       Electrochimica Acta, 317, 398-407, 2019.
       DOI: https://doi.org/10.1016/j.electacta.2019.05.095
        Keywords: reactive template, nanorods, lithium-rich oxide, high specific capacity, rate capability

J093.  "Sodium cobalt metaphosphate as an efficient oxygen evolution reaction catalyst in alkaline solution",
        R. Gond, D.K. Singh, M. Eswaramoorthy, P. Barpanda,
       
Angewandte Chemie International Edition, 58(25), 8330-8335, 2019.
       DOI: https://doi.org/10.1002/anie.201982561
        Keywords: metaphosphate, combustion, oxygen evolution reaction, hydrogen economy
        [Highlighted in Frontispiece Picture]


J092.  "Low cost, fast, template free synthesis of nanoscale zinc spinels for energy storage and electrocatalytic applications",
        A. Baby, B. Senthilkumar, P. Barpanda,

       ACS Applied Energy Materials, 2(5), 3211-3219, 2019.
       DOI: https://doi.org/10.1021/acsaem.9b00054
        Keywords: spinel, combustion synthesis, aqueous Zn-ion battery, oxygen reduction reaction, electrocatalyst 
        

J091.  "Tavorite LiFePO4OH hydroxyphosphate as an anode for aqueous lithium-ion batteries",
        L. Sharma, K. Nakamoto, S. Okada, P. Barpanda,

       Journal of Power Sources, 429, 17-21, 2019.
       DOI: https://doi.org/10.1016/j.jpowsour.2019.04.110
        Keywords: aqueous Li-ion batteries, anode, tavorite, hydroxyphosphate, LiFePO4OH

J090.  "An overview on nanostructured Li-based thin film micro-batteries",
        A. Rambabu, S.B. Krupanidhi, P. Barpanda,
       Proceedings of the Indian National Science Academy, 
85(1), 121-142, 2019.
       DOI: https://doi.org/10.16943/ptinsa/2018/49472
        Keywords: all-solid-state micro-batteries, thin films, cathodes, anodes, solid electrolytes
        [Invited Review]

J089.  "An overview of mixed polyanionic cathode materials for sodium-ion batteries",
        B. Senthilkumar, C. Murugesan, L. Sharma, S. Lochab, P. Barpanda,
       Small Methods, 3(4), 1800253, 2019.
       DOI: 
https://doi.org/10.1002/smtd.201800253
        Keywords: capacity, cathodes, mixed polyanions, sodium-ion batteries, voltage
        [Special Issue: A New Emerging Technology- Na-ion Batteries] [Invited Review]
        [Highlighted in Back Cover Image]

J088.  "Narsarsukite Na2TiOSi4O10 as a low voltage silicate anode for rechargeable Li-ion and Na-ion batteries",
        A. Chaupatnaik, M. Srinivasan, P. Barpanda,
       
ACS Applied Energy Materials, 2(3), 2350-2355, 2019.
       DOI: https://doi.org/10.1021/acsaem.8b01906
        Keywords: intercalation, lithium-ion battery, Na2TiOSi4O10, narsarsukite, sodium-ion battery

J087.  "Superior potassium-ion hybrid capacitor based on novel P3-type layered K0.45Mn0.5
Co0.5O2 as high capacity cathode",
        H.V. Ramasamy, B. Senthilkumar, P. Barpanda, Y.S. Lee,
       
Chemical Engineering Journal, 368, 235-243, 2019.
       DOI: https://doi.org/10.1016/j.cej.2019.02.172
        Keywords: potassium-ion capacitor, P3-K0.45Mn0.5Co0.5O2, energy density, potassium-ion intercalation, capacity

J086.  "Ultrasonic sonochemical synthesis of Na0.44MnO2 insertion material for sodium-ion batteries",
        G.S. Shinde, P.D. Nayak, V.S. Pranav, S.K. Jain, A. Pathak, S. Sanyal, J. Balachandran, P. Barpanda,

       Journal of Power Sources, 416, 50-55, 2019.
       DOI: https://doi.org/10.1016/j.jpowsour.2019.01.161
        Keywords: Na-ion battery, cathode, Na0.44MnO2, sonochemical synthesis, capacity 
        [Special Issue related to IBA-2018 Meeting at Jeju Islands, South Korea]

J085.  "Operando structural and electrochemical investigation of Li1.5V3O8 nanorods in Li-ion batteries",
        T. Partheeban, T. Kesavan, M. Vivekanantha, B. Senthilkumar, P. Barpanda, M. Sasidharan
,
       
ACS Applied Energy Materials, 2(1), 852-859, 2019.
       DOI: https://doi.org/10.1021/acsaem.8b019015
        Keywords: Lithium-ion batteries, cathode, Li1.5V3O8, nanorods, in-situ X-ray diffraction, capacity 

J084.  "In-situ neutron diffraction studies of LiCe(WO4)2 polymorphs: Phase transition and structure-property correlation",
        A.K. Munirathnappa, D. Dwibedi, J. Hester, P. Barpanda, D. Swain, C. Narayana, N.G. Sundaram,

       Journal of Physical Chemistry C, 123(2), 1041-1049, 2019.
       DOI: https://doi.org/10.1021/acs.jpcc.8b09364
        Keywords: Li-ion batteries, anodes, LiCe(WO4)2, neutron diffraction, phase transition, polymorphism  

J083. 
 "Diffusional and electrochemical investigation of combustion synthesized BaLi2Ti6O14 titanate anode
        for rechargeable batteries
",
        A. Chaupatnaik, P. Barpanda,
       Journal of Materials Research, 34(1), 158-168, 2019.
       DOI: https://doi.org/10.1557/jmr.2018.250
        Keywords: combustion synthesis, energy storage, Li
        [Annual Issue: Early Career Scholars in Materials Science 2019] 

J082.  "Na2FePO4F fluorophosphate as positive insertion material for aqueous sodium-ion batteries",
        L. Sharma, K. Nakamoto, R. Sakamoto, S. Okada, P. Barpanda,
       
ChemElectroChem, 6(2), 444-449, 2019.
       DOI: https://doi.org/10.1002/celc.201801314
        Keywords: aqueous sodium-ion batteries, cathode materials, fluorophosphates, Na2FePO4F, NaTi2(PO4)3 anode

J081.  "Swift combustion synthesis of PbLi2Ti6O14 anode for lithium-ion batteries: Diffusional and electrochemical investigation",
        A. Chaupatnaik, P. Barpanda,
       Journal of the Electrochemical Society, 
166(3), A5122-5130, 2019.
       DOI: https://doi.org/10.1149/2.0191903jes
        Keywords: Li-ion batteries, anode, titanate, PbLi2Ti6O14, combustion synthesis, diffusion
        [Focus Issue related to IMLB-2018 Meeting at Kyoto, Japan]

J080.  
"Layered Na2Mn3O7 as a 3.1 V insertion material for Li-ion batteries",
        K. Sada, B. Senthilkumar, P. Barpanda,
       ACS Applied Energy Materials, 1(12), 6719-6724, 2018.
       DOI: https://doi.org/10.1021/acsaem.8b01551
        Keywords: capacity, intercalation mechanism, layered oxides, Li-ion batteries, Na2Mn3O7 

J079.  "Potassium-ion intercalation mechanism in layered Na2Mn3O7",
        K. Sada, B. Senthilkumar, P. Barpanda,
       ACS Applied Energy Materials, 1(10), 5410-5416, 2018.
       DOI: https://doi.org/10.1021/acsaem.8b01016
        Keywords: capacity, intercalation mechanism, layered oxides, PITT, potassium-ion battery

J078.  "Revisiting the alluaudite NaMnFe2(PO4)3 sodium insertion material: Structural, diffusional and electrochemical insights
",
        D. Dwibedi, P.W. Jaschin, R. Gond, P. Barpanda,
       
Electrochimica Acta, 283, 850-857, 2018.
       DOI: https://doi.org/10.1016/j.electacta.2018.06.178
        Keywords: sodium-ion battery, alluaudite, combustion, bond valence site energy, conductivity  

J077.  "Ultra-rapid combustion synthesis of Na2FePO4F fluorophosphate host for Li-ion and Na-ion insertion
",
        L. Sharma, A. Bhatia, L. Assaud, S. Franger, P. Barpanda,
       Ionics, 24(8), 2187-2192, 2018.
       DOI: https://doi.org/10.1007/s11581-017-2376-3
        Keywords: fluorophosphate, solution combustion, nanometric particles, capacity
        [Special Issue: GARNET-2017 meeting at Pondicherry, Bharat]


J076.  "Polyanionic insertion materials for sodium-ion batteries",
        P. Barpanda, L. Lander, S. Nishimura, A. Yamada,
       Advanced Energy Materials, 8(17), 1703055, 2018.
       DOI: https://doi.org/10.1002/aenm.201703055
        Keywords: batteries, electrodes, intercalation, polyanion, sodium
        [Special Issue: Sodium-ion Batteries] [Invited Review]


J075.  "Cubic sodium cobalt metaphosphate [NaCo(PO3)3] as a novel cathode material for sodium-ion batteries",
        R. Gond, R. Prasada Rao, V. Pralong, O.I. Lebedev, S. Adams, P. Barpanda,
       Inorganic Chemistry, 57(11), 6324-6332, 2018.
       DOI: https://doi.org/10.1021/acs.inorgchem.8b00291
        Keywords: sodium-ion batteries, cathode, metaphosphate, NaCo(PO3)3, bond valence site energy 

J074.  "Electrochemical and diffusional insights on combustion synthesized SrLi2Ti6O14 negative insertion material
        for Li-ion batteries"
,

        A. Dayamani, G.S. Shinde, A. Chaupatnaik, R. Prasada Rao, S. Adams, P. Barpanda,
       Journal of Power Sources, 385, 122-129, 2018.
       DOI: https://doi.org/10.1016/j.jpowsour.2018.03.021
        Keywords: Li-ion battery, anodes, SrLi2Ti6O14, combustion, bond valence site energy

J073.  "Preferentially oriented SrLi2Ti6O14 thin film anode for Li-ion micro-batteries fabricated by pulsed laser deposition
",
        A. Rambabu, B. Senthilkumar, A. Dayamani, S.B. Krupanidhi, P. Barpanda,
       
Electrochimica Acta, 269, 212-216, 2018.
       DOI: https://doi.org/10.1016/j.electacta.2018.02.164
        Keywords: thin-film batteries, pulsed laser deposition, Li-ion batteries, anodes, SrLi2Ti6O14  

J072.  "Earth-abundant alkali iron phosphates (AFePO4) as efficient electrocatalysts for oxygen reduction reaction in alkaline solution
",
        C. Murugesan, S. Lochab, B. Senthilkumar, P. Barpanda,
       ChemCatChem, 10(5), 1122-1127, 2018.
       DOI: https://doi.org/10.1002/cctc.201701423
        Keywords: electrocatalysts, iron phosphates, maricite, oxygen reduction reaction, structure

J071.  "Bifunctional electrocatalytic behaviour of sodium cobalt phosphates in alkaline solution",
        R. Gond, S. Krishnakanth, B. Senthilkumar, P. Barpanda,
       ChemElectroChem, 5(1), 153-158, 2018.
       DOI: https://doi.org/10.1002/celc.201700873
        Keywords: Na-air battery, bifunctional electrocatalyst, maricite, oxygen reduction reaction

J070. 
 "In-situ deposition of Na2Ti6O13 thin film as anode for sodium-ion micro-batteries developed by pulsed laser deposition",
        A. Rambabu, B. Senthilkumar, K. Sada, S.B. Krupanidhi, P. Barpanda,
       Journal of Colloid and Interface Science, 514, 117-121, 2018.
       DOI: https://doi.org/10.1016/j.jcis.2017.12.023
        Keywords: pulsed laser deposition, thin-film, micro-batteries, Na2Ti6O13, sodium-ion batteries

J069.  "Role of annealing temperature on cation ordering in hydrothermally prepared zinc aluminate (ZnAl2O4) spinel
",
        D. Dwibedi, M. Chinnasamy, M. Leskes, P. Barpanda,
       Materials Research Bulletin, 98(10), 219-224, 2018.
       DOI: https://doi.org/10.1016/j.materresbull.2017.10.010
        Keywords: ceramics, solvothermal, Raman spectroscopy, X-ray diffraction, defects

J068.  "Mechanistic study of Na-ion diffusion and small polaron formation in krohnkite Na2Fe(SO4)2.2H2O based cathode material
",
        T. Watcharatharapong, J. T-Thienprasert, P. Barpanda, R. Ahuja, S. Chakraborty,
       
Journal of Materials Chemistry A, 5(41), 21726-21739, 2017.
       DOI: https://doi.org/10.1039/C7TA04508E
        Keywords: Na-ion battery, krohnkite, Na2Fe(SO4)2.2H2O, diffusion, small hole polaron, DFT calculation  

J067.  "
Electrochemical and diffusional investigation of Na2Fe(II)PO4F fluorophosphates sodium insertion material obtained
        from Fe(III) precursor
",
        L. Sharma, P. Nayak, E. de la Llave, H. Chen, S. Adams, D. Aurbach, P. Barpanda,
       ACS Applied Materials & Interfaces, 9(4), 34961-34969, 2017.
       DOI: https://doi.org/10.1021/acsami.7b10637
        Keywords: bond-valence site energy, combustion, fluorophosphate, Na-ion battery, Na2FePO4F

J066.  "Electrochemical potassium-ion intercalation in NaxCoO2: A novel cathode material for potassium-ion batteries",
        S. Krishnakanth, B. Senthilkumar, P. Barpanda,
       Chemical Communications, 53(61), 8588-8591, 2017.
       DOI: https://doi.org/10.1039/C7CC02791E
        Keywords: potassium-ion batteries, intercalation, NaxCoO2, high rate capability, ex-situ XRD

J065.  "Autocombustion synthesis of nanostructured Na2Ti6O13 negative insertion material for Na-ion batteries:
        Electrochemical and diffusion mechanism",
        S. Ghosh, A. Dayamani, B. Kishore, N. Munichandraiah, R. Prasada Rao, L.L. Wong, S. Adams, P. Barpanda,
       Journal of the Electrochemical Society, 164(9), A1881-1886, 2017.
       DOI: https://doi.org/10.1149/2.0641709jes
        Keywords: autocombustion synthesis, BVSE mapping, Na batteries, Na2Ti6O13

J064.  "Enabling the electrochemical activity in sodium iron metaphosphate [NaFe(PO3)3] sodium battery insertion materials:
        Structural and electrochemical insights
",
        R. Gond, S.S. Meena, S.M. Yusuf, V. Shukla, N.K. Jena, R. Ahuja, S. Okada, P. Barpanda,
       Inorganic Chemistry, 56(10), 5918-5929, 2017.
       DOI: https://doi.org/10.1021/acs.inorgchem.7b00561
        Keywords: Na batteries, metaphosphate, NaFe(PO3)3, Fe-redox activity, DFT calculation

J063.  "Magnetic structure and properties of centrosymmetric twisted melilite K2CoP2O7
",
        M. Sale, M. Avdeev, Z. Mohamed, C.D. Ling, P. Barpanda,
       
Dalton Transactions, 46(19), 6409-6416, 2017.
       DOI: https://doi.org/10.1039/C7DT00978J
        Keywords: K2CoP2O7, melilite, neutron powder diffraction, ab-initio calculation, magnetic ordering 

J062.  "
Na2.32Co1.84(SO4)3 as a new member of alluaudite family of high-voltage sodium battery cathode",
        D. Dwibedi, R. Gond, A. Dayamani, R.B. Araujo, S. Chakraborty, R. Ahuja, P. Barpanda,
       Dalton Transactions, 46(1), 55-63, 2017.
       DOI: https://doi.org/10.1039/C6DT03767D
        Keywords: Na-ion battery, alluaudite, Na2Co2(SO4)3, DFT, high-voltage cathode
        [Highlighted in Inside Cover Page Image]


J061.  "Porous, hollow Li1.2Mn0.53Ni0.13Co0.13O2 microspheres as a positive electrode material for Li-ion batteries",
        S. Duraisamy, T. Penki Rao, B. Kishore, P. Barpanda, P.K. Nayak, D. Aurbach, N. Munichandraiah,
       Journal of Solid State Electrochemistry, 21, 437-445, 2017.
       DOI: https://doi.org/10.1007/s10008-016-3380-7
        Keywords: sacrificial MnO2 template, hollow microspheres, Li-rich oxide, high discharge capacity, high rate capability

J060.  "Sonochemical synthesis of nanostructured spinel 
Li4Ti5O12 negative insertion material for Li-ion and Na-ion batteries",
        S. Ghosh, S. Mitra, P. Barpanda,
       Electrochimica Acta, 222, 898-903, 2016.
       DOI: https://doi.org/10.1016/j.electacta.2016.11.055
        Keywords: Li4Ti5O12, anode, sonochemical synthesis, Li batteries, Na batteries
        [Special issue related to the 19th Topical Meeting of International Society of Electrochemistry, Auckland, New Zealand]

J059.  "
Na2M2(SO4)3 (M= Fe, Mn, Co and Ni): Towards high voltage sodium battery applications",
        R.B. Araujo, S. Chakraborty, P. Barpanda, R. Ahuja,
       Physical Chemistry Chemical Physics, 18(14), 9658-9665, 2016.
       DOI: https://doi.org/10.1039/C6CP00070C
        Keywords: sodium-ion batteries, alluaudites, Na2M2(SO4)3, DFT calculations, electronic structure 

J058.  "Ionothermal synthesis of high-voltage alluaudite Na2+2xFe2-x(SO4)3 sodium insertion compound:
        Structural, electronic and magnetic insights"
,

        D. Dwibedi, C.D. Ling, R.B. Araujo, S. Chakraborty, S. Duraisamy, N. Munichandraiah, R. Ahuja, P. Barpanda,
        ACS Applied Materials & Interfaces, 8(11), 6982-6991, 2016.
       DOI: https://doi.org/10.1021/acsami.5b11302
        Keywords: alluaudite, DFT, ionothermal synthesis, Na2Fe2(SO4)3, sodium-ion battery

J057.  "Pursuit of sustainable iron-based positive insertion materials for sodium-ion batteries: Two case studies",
        P. Barpanda,
       Chemistry of Materials, 28(4), 1006-1011, 2016.
       DOI: https://doi.org/10.1021/acs.chemmater.5b03926
        Keywords: sodium-ion batteries, high energy density, oxides, polyanionic compounds, Fe-based cathodes
        [Invited Perspective Article]|
[Table of Content Image highlighted by editor]

J056.  "Na2.44Mn1.79(SO4)3: A new member of alluaudite family of insertion compound for sodium ion batteries",
        D. Dwibedi, R.B. Araujo, S. Chakraborty, P. Shanbogh, N. Sundaram, R. Ahuja, P. Barpanda,
        Journal of Materials Chemistry A, 3(36), 18564-18571, 2015.
       DOI: https://doi.org/10.1039/c5ta04527d
        Keywords: Na-ion battery, alluaudite, Na2Mn2(SO4)3, DFT, high-voltage cathode

J055.  "Role of fuel on cation disorder in magnesium aluminate (MgAl2O4) spinel prepared by combustion synthesis",
       D. Dwibedi, M. Avdeev, P. Barpanda,
       Journal of the American Ceramic Society, 98(9), 2908-2913, 2015.
       DOI: https://doi.org/10.1111/jace.13705
        Keywords: spinel, MgAl2O4, ordering, neutron diffraction, Raman spectroscopy

J054.  "Insight into the limited electrochemical activity of NaVP2O7",
       Y. Kee, N. Dimov, A. Staikov, P. Barpanda, Y.C. Lu, K. Minami, S. Okada,
       RSC Advances, 5(80), 64991-64996, 2015.
       DOI: https://doi.org/10.1039/c5ra12158b

        Keywords: Na-ion battery, pyrophosphate, NaVP2O7, kinetics, energy barrier
        [Themed Collection of Nanoscience and Nanotechnology in Electrochemistry]
​ 

J053.  "Energy-savvy solid-state and sonochemical synthesis of lithium sodium titanate as an anode active material for Li-ion batteries",
       S. Ghosh, Y. Kee, S. Okada, P. Barpanda,
       Journal of Power Sources, 296, 276-281, 2015.
       DOI: https://doi.org/10.1016/j.jpowsour.2015.07.057
        Keywords: Li-ion battery, anode, titanium chemistry, sonochemical synthesis, nanomaterial

J052.  "Lithium metal borate (LiMBO3) family of insertion materials for Li-ion batteries: A sneak peak",
       P. Barpanda, D. Dwibedi, S. Ghosh, Y. Kee, S. Okada,
       Ionics, 21(7), 1801-1812, 2015.
       DOI: https://doi.org/10.1007/s11581-015-1463-6

        Keywords: Li-ion battery, polyanion, borate, LiMBO3, polymorphism, capacity
       [Invited Review]
      
J051.  "Sulphate chemistry for high-voltage insertion materials: Synthetic, structural and electrochemical insights",
       P. Barpanda,
       Israel Journal of Chemistry, 55(5), 537-557, 2015.
       DOI: https://doi.org/10.1002/ijch.201400157
        Keywords: alkali metals, electrochemistry, polyanions, structure elucidation, sulfur
       [Special issue on 'Next generation batteries: Materials and electrochemical systems']|[Invited Review]

J050.  "An alluaudite Na2+2xFe2-x(SO4)3 (x = 0.2) derivative phase as an insertion host for lithium battery",
       J. Ming, P. Barpanda, S. Nishimura, M. Okubo, A. Yamada,
       Electrochemistry Communications, 51, 19-22, 2015.
      
DOI: https://doi.org/10.1016/j.elecom.2014.11.009

        Keywords: lithium batteries, sodium batteries, cathode, alluaudite, oxidation

J049.  "t-Na2VOP2O7: A 3.8 V pyrophosphate insertion material for sodium-ion batteries",
       P. Barpanda, G. Liu, M. Avdeev, A. Yamada,
       ChemElectroChem, 1(9), 1488-1491, 2014.
      
DOI: https://doi.org/10.1002/celc.201402095
        Keywords: cations, electrochemistry, energy conversion, sodium, vanadium
       [Highlighted in Inside Cover Page Image]

J048.  "A 3.8 V earth-abundant sodium battery electrode",
       P. Barpanda, G. Oyama, S. Nishimura, S.C. Chung, A. Yamada,
       Nature C
ommunications, 5:4358, 1-8, 2014.
      
DOI: https://doi.org/10.1038/ncomms5358

        Keywords: sodium battery, cathode, alluaudite, high voltage operation
       [Winner of The Ross Coffin Purdy Award-2016 by the American Ceramic Society]      

J047. "Sodium-ion battery cathodes Na2FeP2O7 and Na2MnP2O7: Diffusion behavior for high rate performances",
       J.M. Clark, P. Barpanda, A. Yamada, M.S. Islam,
       Journal of Materials Chemistry A, 
2(30), 11807-11812, 2014.
       DOI: https://doi.org/10.1039/C4TA02383H
       
Keywords: sodium-ion battery, pyrophosphates, cathode, diffusion, rate kinetics

J046. "Structural, magnetic and electrochemical investigation of novel binary Na2-x(Fe1-yMny)P2O7 (0 < y < 1) pyrophosphate
       compounds for rechargeable sodium-ion batteries"
,
       
P. Barpanda, G. Liu, Z. Mohamed, C.D. Ling, A. Yamada,
       Solid State Ionics, 
268, 305-311, 2014.
       DOI: https://doi.org/10.1016/j.ssi.2014.03.011
       Keywords: sodium-ion battery, pyrophosphate, Na2FeP2O7, Na2MnP2O7, solid-solution
       [Special Issue: ICMAT-2013 Symposium A: Advanced Energy Storage Systems: Lithium Ion Batteries and Beyond]      


J045. "Krohnkite-type Na2Fe(SO4)2.2H2O as a novel 3.25 V insertion compound for Na-ion batteries",
       
P. Barpanda, G. Oyama, C.D. Ling, A. Yamada,
       Chemistry of Materials, 
26(3), 1297-1299, 2014.
       DOI: https://doi.org/10.1021/cm4033226
       Keywords: sodium-ion battery, krohnkite, Na2FeSO4.2H2O, sulfate, synchrotron

J044. 
"Magnetic structure and properties of the rechargeable battery insertion compound Na2FePO4F",
       
M. Avdeev, C.D. Ling, T.T. Tan, S. Li, G. Oyama, A. Yamada, P. Barpanda,
       Inorganic Chemistry, 
53(2), 682-684, 2014.
       DOI: https://doi.org/10.1021/ic402513d
       Keywords: magnetic structure, fluorophosphate, Na2FePO4F, neutron powder diffraction, antiferromagnetic ordering

J043. 
"Sodium manganese fluorosulfate with a triplite structure",
       
P. Barpanda, C.D. Ling, G. Oyama, A. Yamada,
       Acta Crystallographica, 
B69, 584-588, 2013.
       DOI: https://doi.org/10.1107/S2052519213024093
       Keywords: sodium-ion battery cathodes, fluorosulfates, triplite, disorder

J042. 
"General observation of Fe3+/Fe2+ redox couple close to 4 V in partially substituted Li2FeP2O7 pyrophosphate
       solid-solution cathodes"
,
       
T. Ye, P. Barpanda, S. Nishimura, N. Furuta, S.C. Chung, A. Yamada,
       Chemistry of Materials, 
25(18), 3623-3629, 2013.
       DOI: https://doi.org/10.1021/cm401547z
       Keywords: lithium-ion battery, pyrophosphate, redox potential tunability, structural stabilization

J041. 
"Na2FeP2O7: A safe cathode for rechargeable sodium-ion batteries",
       
P. Barpanda, G. Liu, C.D. Ling, M. Tamaru, M. Avdeev, S.C. Chung, Y. Yamada, A. Yamada,
       Chemistry of Materials, 
25(17), 3480-3487, 2013.
       DOI: https://doi.org/10.1021/cm401657c
       Keywords: sodium-ion battery, cathode, Na2FeP2O7, NaFeP2O7, polymorphism, safety

J040. 
"Magnetic structures of NaFePO4 maricite and triphylite polymorphs for sodium-ion batteries",
       
M. Avdeev, Z. Mohamed, C.D. Ling, J. Lu, M. Tamaru, A. Yamada, P. Barpanda,
       Inorganic Chemistry, 
52(15), 8685-8693, 2013.
       DOI: https://doi.org/10.1021/ic400870x
       Keywords: magnetic structure, NaFePO4, polymorphism, triphylite, maricite

J039. 
"Demonstration of Co3+/Co2+ electrochemical activity in LiCoBO3 cathode at 4.0 V",
       
Y. Yamashita, P. Barpanda, Y. Yamada, A. Yamada,
       ECS Electrochemistry Letters, 
2(8), A75-A77, 2013.
       DOI: https://doi.org/10.1149/2.003308eel
       Keywords: Li-ion batteries, cathode, borate, LiCoBO3, high voltage

J038. 
"Neutron diffraction study of the Li-ion battery cathode Li2FeP2O7",
       
P. Barpanda, G. Rousse, T. Ye, C.D. Ling, Z. Mohamed, Y. Klein, A. Yamada,
       Inorganic Chemistry, 
52(6), 3334-3341, 2013.
       DOI: https://doi.org/10.1021/ic302816w
       Keywords: Li-ion batteries, Li2FeP2O7, magnetic structure, neutron diffraction, magnetic ordering​ 

J037. "High-throughput solution combustion synthesis of high-capacity LiFeBO3 cathode",
       
P. Barpanda, Y. Yamashita, Y. Yamada, A. Yamada,
       Journal of the Electrochemical Society, 
160(5), A3095-A3099, 2013.
       DOI: https://doi.org/10.1149/2.015305jes
       Keywords: Li-ion batteries, cathode, borate, LiFeBO3, high capacity​
       [Focus Issue on 'Intercalation Compounds for Rechargeable Batteries']

J036. 
"A new polymorph of Na2MnP2O7 as a 3.6 V cathode material for sodium-ion batteries",
       
P. Barpanda, T. Ye, M. Avdeev, S.C. Chung, A. Yamada,
       Journal of Materials Chemistry A, 
1(13), 4194-4197, 2013.
       DOI: https://doi.org/10.1039/C3TA10210F
       Keywords: sodium batteries, pyrophosphate, Na2MnP2O7, cathode, polymorphism​

J035. 
"A layer-structured Na2CoP2O7 pyrophosphate cathode for sodium-ion batteries",
       
P. Barpanda, J. Lu, T. Ye, M. Kajiyama, S.C. Chung, N. Yabuuchi, S. Komaba, A. Yamada,
       RSC Advances, 
3(12), 3857-3860, 2013.
       DOI: https://doi.org/10.1039/C3RA23026K
       Keywords: sodium batteries, pyrophosphate, Na2CoP2O7, cathode, layered material​

J034. "Magnetic structure and properties of the Na2CoP2O7 pyrophosphate cathode for sodium-ion batteries:
       A supersuperexchange-driven non-collinear antiferromagnet"
,
       
P. Barpanda, M. Avdeev, C.D. Ling, J. Lu, A. Yamada,
       Inorganic Chemistry, 
52(1), 395-401, 2013.
       DOI: https://doi.org/10.1021/ic302191d
       Keywords: pyrophosphate, Na2CoP2O7, magnetometry, neutron diffraction, antiferromagnet

J033. 
"Sodium iron pyrophosphate: A novel 3.0 V iron-based cathode for sodium-ion batteries",
       
P. Barpanda, T. Ye, S. Nishimura, S.C. Chung, Y. Yamada, M. Okubo, H. Zhou, A. Yamada,
       Electrochemistry Communications, 
24, 116-119, 2012.
       DOI: https://doi.org/10.1016/j.elecom.2012.08.028
       Keywords: Na-ion batteries, cathode, pyrophosphate, Na2FeP2O7       

J032. 
"Observation of the highest Mn3+/Mn2+ redox potential of 4.45 V in a Li2MnP2O7 pyrophosphate cathode",
       
M. Tamaru, P. Barpanda, Y. Yamada, S. Nishimura, A. Yamada,
       Journal of Materials Chemistry, 
22(47), 24526-24529, 2012.
       DOI: https://doi.org/10.1039/C2JM35260E
       Keywords: Li-ion batteries, cathode, pyrophosphate, Li2MnP2O7, high voltage

J031. 
"High-voltage pyrophosphate cathodes",
       
P. Barpanda, S. Nishimura, A. Yamada,
       Advanced Energy Materials, 
2(7), 841-859, 2012.
       DOI: https://doi.org/10.1002/aenm.201100772
       Keywords: batteries, cathodes, pyrophosphates, polymorphism, high voltage​
       [Special Issue: Next Generation Battery Materials] [Invited Review]


J030. "Electrochemical redox mechanism in 3.5 V Li2-xFeP2O7 (0 < x < 1) pyrophosphate cathode",
       
D. Shimizu, S. Nishimura, P. Barpanda, A. Yamada,
       Chemistry of Materials, 
24(13), 2598-2603, 2012.
       DOI: https://doi.org/10.1021/cm301337z
       Keywords: Li-ion battery, pyrophosphates, X-ray diffraction, redox mechanism

J029. 
"Eco-efficient splash combustion synthesis of nanoscale pyrophosphate (Li2FeP2O7) positive-electrode using Fe(III) precursors",
       
P. Barpanda, T. Ye, S.C. Chung, Y. Yamada, S. Nishimura, A. Yamada,
       Journal of Materials Chemistry, 
22(27), 13455-13459, 2012.
       DOI: https://doi.org/10.1039/C2JM32566G
       Keywords: Li-ion battery, cathode, pyrophosphate, combustion synthesis, Li2FeP2O7

J028. 
"Polymorphs of LiFeSO4F as cathode materials for lithium ion battery- A first principle computational study",
       
S.C. Chung, P. Barpanda, S. Nishimura, Y. Yamada, A. Yamada,
       Physical Chemistry Chemical Physics, 
14(24), 8678-8682, 2012.
       DOI: https://doi.org/10.1039/C2CP40489C
       Keywords: lithium battery, cathode, fluorosulfate, LiFeSO4F, DFT study​

J027. "Fe3+/Fe2+ redox couple approaching 4 V in Li2-x(Fe1-yMny)P2O7 pyrophosphate cathodes",
       
N. Furuta, S. Nishimura, P. Barpanda, A. Yamada,
       Chemistry of Materials, 
24(6), 1055-1061, 2012.
       DOI: https://doi.org/10.1021/cm2032465
       Keywords: lithium ion battery, cathode material, pyrophosphate, polyanionic compounds
​

J026. "Enabling the Li-ion conductivity of Li-metal fluorosulphates by ionic liquid grafting",
       
P. Barpanda, R. Dedryvere, M. Deschamps, C. Delacourt, M. Reynaud, A. Yamada, J.M. Tarascon,
       Journal of Solid State Electrochemistry, 
16(5), 1743-1751, 2012.
       DOI: https://doi.org/10.1007/s10008-011-1598-y
       Keywords: conductivity, fluorosulphates, ionic liquid grafting, solid electrolyte
       [Special Issue: ICMAT-2011 Symposium N: Advanced Energy Storage Systems- from fundamentals to applications]


J025. "Synthesis and crystal chemistry of the NaMSO4F family (M = Mg, Fe, Co, Cu, Zn)",
       
M. Reynaud, P. Barpanda, G. Rousse, J.N. Chotard, B.C. Melot, N. Recham, J.M. Tarascon,
       Solid State Sciences, 
14(1), 15-20, 2012.
       DOI: https://doi.org/10.1016/j.solidstatesciences.2011.09.004
       Keywords: fluorosulphate, cathode, tavorite-like framework, ionic conductivity, battery

J024. "A 3.90 V iron-based fluorosulphate material for lithium-ion batteries crystallizing in the triplite structure",
       
P. Barpanda, M. Ati, B.C. Melot, G. Rousse, J.N. Chotard, M.L. Doublet, M.T. Sougrati, S.A. Corr, J.C. Jumas, J.M. Tarascon,
       Nature Materials, 
10(10), 772-779, 2011.
       DOI: https://doi.org/10.1038/nmat3093
       Keywords: lithium batteries, cathode, fluorosulphates, triplite, high voltage

​J023. 
"Structural and electrochemical diversity in LiFe1-dZndSO4F solid solution: A Fe-based 3.9 V positive-electrode material",
       
M. Ati, B.C. Melot, G. Rousse, J.N. Chotard, P. Barpanda, J.M. Tarascon,
       Angewandte Chemie International Edition,
50(45), 10574-10577, 2011.
       DOI: https://doi.org/10.1002/anie.201104648
       Keywords: batteries, electrochemistry, fluorosulfates, lithium, solid-state structures
       [Highlighted as 'Hot Paper']

J022. 
"Structure, surface morphology and electrochemical properties of brominated activated carbons",
       
P. Barpanda, G. Fanchini, G.G. Amatucci,
       Carbon, 
49(7), 2538-2548, 2011.
       DOI: https://doi.org/10.1016/j.carbon.2011.02.028
       Keywords: supercapacitors, activated carbon, bromination, mechanical milling, pseudocapacitance​

​J021. "Direct and modified ionothermal synthesis of LiMnPO4 with tunable morphology for rechargeable Li-ion batteries",
       
P. Barpanda, K. Djellab, N. Recham, M. Armand, J.M. Tarascon,
       Journal of Materials Chemistry, 
21(27), 10143-10152, 2011.
       DOI: https://doi.org/10.1039/C0JM04423G
       Keywords: Li-ion batteries, LiMnPO4, ionothermal synthesis, morphology, capacity
       [Themed Issue on 'Advanced Materials for Lithium Batteries']
       [Highlighted as 'Hot Paper'] [Highlighted with 'Inside Cover Page Image']
​

J020. "LiZnSO4F made in an ionic liquid: A ceramic electrolyte composite for solid-state lithium batteries",
       
P. Barpanda, J.N. Chotard, C. Delacourt, M. Reynaud, Y. Filinchuk, M. Armand, M. Deschamps, J.M. Tarascon,
       Angewandte Chemie International Edition, 
50(11), 2526-2531, 2011.
       DOI: https://doi.org/10.1002/anie.201006331
       Keywords: ceramics, electrolytes, fluorosulfates, ionic liquids, lithium batteries​
       [Highlighted as 'Hot Paper']

J019. 
"Magnetisation reversal in cylindrical nickel nanobars involving magnetic vortex structure: A micromagnetic study",
       
P. Barpanda,
       Physica B: Condensed Matter, 
406(6-7), 1336-1340, 2011.
       DOI: https://doi.org/10.1016/j.physb.2011.01.029
       Keywords: cylindrical nanobars, micromagnetics, inversion symmetry, coercivity, nickel​

J018. 
"Structural and electrochemical modification of graphitic carbons by vapor-phase iodine-incorporation",
       
P. Barpanda, K. Djellab, R.K. Sadangi, A.K. Sahu, D. Roy, K. Sun,
       Carbon, 
48(14), 4178-4189, 2010.
       DOI: https://doi.org/10.1016/j.carbon.2010.07.038
       Keywords: supercapacitors, graphite, iodine, ordering, capacitance​

J017. 
"Structural, transport, and electrochemical investigation of novel AMSO4F (A= Na, Li; M = Fe, Co, Ni, Mn)
       metal fluorosulphates prepared using low temperature synthesis routes"
,
       
P. Barpanda, J.N. Chotard, N. Recham, C. Delacourt, M. Ati, L. Dupont, M. Armand, J.M. Tarascon,
       Inorganic Chemistry, 
49(16), 7401-7413, 2010.
       DOI: https://doi.org/10.1021/ic100583f
       Keywords: batteries, cathodes, fluorosulphates, low temperature synthesis, conductivity​

J016. 
"Fluorosulfate positive electrodes for Li-ion batteries made via a solid-state dry process",
       
M. Ati, M.T. Sougrati, N. Recham, P. Barpanda, J.B. Leriche, M. Courty, M. Armand, J.C. Jumas, J.M. Tarascon,
       Journal of the Electrochemical Society, 
157(9), A1007-A1015, 2010.
       DOI: https://doi.org/10.1149/1.3457435
       Keywords: ball milling, electrochemical electrodes, iron compounds, Mossbauer effect, secondary cells

J015. 
"Synthesis, structural, and transport properties of novel bihydrated fluorosulfates NaMSO4F.2H2O (M = Fe, Co and Ni)",
       
M. Ati, L. Dupont, N. Recham, J.N. Chotard, W. Walker, C. Davoisne, P. Barpanda, V. Sarou-Kanian, M. Armand, J.M. Tarascon,
       Chemistry of Materials, 
22(13), 4062-4068, 2010.
       DOI: https://doi.org/10.1149/1.3457435
       Keywords: sodium insertion materials, bihydrated fluorosulfates, NaMSO4F.2H2O, uklonskovite, conductivity

J014. 
"Structure and electrochemical properties of novel mixed Li(Fe1-xMx)SO4F (M = Co, Ni, Mn) phases fabricated by
       low temperature ionothermal synthesis"
,
       
P. Barpanda, N. Recham, J.N. Chotard, K. Djellab, W. Walker, M. Armand, J.M. Tarascon,
       Journal of Materials Chemistry, 
20(9), 1659-1668, 2010.
       DOI: https://doi.org/10.1039/B922063A
       Keywords: Li-ion batteries, fluorosulphates, tavorite, ionic liquids, solid solution​
       [Highlighted as 'Cover Page Image']

J013. 
"Hunting for better Li-based electrode materials via low temperature inorganic synthesis",
       
J.M. Tarascon, N. Recham, M. Armand, J.N. Chotard, P. Barpanda, W. Walker, L. Dupont,
       Chemistry of Materials, 
22(3), 724-739, 2010.
       DOI: https://doi.org/10.1021/cm9030478
       Keywords: batteries, lithium insertion materials, low temperature synthesis, high voltage, capacity
       [Special Issue: 'Materials Chemistry for Energy Conversion'] 
['Cover Page Image']

J012. "Fabrication, physical and electrochemical investigation of microporous carbon polyiodide nanocomposites",
       
P. Barpanda, Y. Li, F. Cosandey, S. Rangan, R.A. Bartynski, G.G. Amatucci,
       Journal of the Electrochemical Society, 
156(11), A873-A885, 2009.
       DOI: https://doi.org/10.1149/1.3212851
       Keywords: crystal morphology, nanocomposites, porous materials, X-ray diffraction, Raman spectroscopy​
       [Highlighted in Virtual Journal of Nanoscale Science and Technology, 20(13), 28 Sep 2009]

J011. 
"The role of magnetic vortex formation in chains of spherical FeNi nanoparticles: A micromagnetic study",
       
P. Barpanda, M.R. Scheinfein, T. Kasama, R.E. Dunin-Borkowski,
       Japanese Journal of Applied Physics, 
48(10), 103002(1-6), 2009.
       DOI: https://doi.org/10.1143/JJAP.48.103002
       Keywords: chain-of-sphere model, permalloy, magnetic domains, vortex, micromagnetic simulation​

J010. "Micromagnetics of magnetisation reversal mechanism in Permalloy chain-of-sphere structure with magnetic vortices",
       
P. Barpanda,
       Computational Materials Science, 
45(2), 240-246, 2009.
       DOI: https://doi.org/10.1016/j.commatsci.2008.09.014
       Keywords: micromagnetics, magnetic vortex, reversal mechanism, coercivity, Permalloy​

J009. 
"Sliding wear behaviour of an epoxy system reinforced with particulate fly ash filler",
       
P. Barpanda, S.M. Kulkarni, Kishore,
       Advanced Composites Letters, 
18(6), 211-217, 2009.
       DOI: https://doi.org/10.1177/096369350901800603
       Keywords: sliding wear, pin-on-disk test, polymer-matrix composites, epoxy, fly ash​
​
J008. 
"Fabrication, structure and electrochemistry of iodated microporous carbons of low mesoporosity",
       
P. Barpanda,
       The Electrochemical Society Interface, 
16(4), 57-58, 2007.
       DOI: https://doi.org/10.xxx/xxxx
       Keywords: activated carbon, halidation, microporous materials, capacity, supercapacitors​
       [Report on 2017 Colin G. Garfield ECS Summer Fellowship]
​

J007. "The physical and electrochemical characterization of vapor phase iodated activated carbons",
       
P. Barpanda, G. Fanchini, G.G. Amatucci,
       Electrochimica Acta, 
52(24), 7136-7147, 2007.
       DOI: https://doi.org/10.1016/j.electacta.2007.05.051
       Keywords: activated carbon, iodine, EDLC, non-Faradaic, non-aqueous​

J006. "Physical and electrochemical properties of iodine-modified activated carbons",
       
P. Barpanda, G. Fanchini, G.G. Amatucci,
       Journal of the Electrochemical Society, 
154(5), A467-A476, 2007.
       DOI: https://doi.org/10.1149/1.2714313
       Keywords: carbon, nanostructured materials, electrochemical electrodes, materials preparation

J005. 
"Evolution and propagation of magnetic vortices in chains of Permalloy nanospheres",
       
P. Barpanda, T. Kasama, M.R. Scheinfein, R.E. Dunin-Borkowski, A.S. Arrott,
       Journal of Applied Physics, 
99(8), 08G103(1-3), 2006.
       DOI: https://doi.org/10.1063/1.2171957
       Keywords: chain-of-spheres, Permalloy, magnetic vortices, domain switching, micromagnetic simulation​

J004. "Chemically induced order disorder transition in magnesium aluminium spinel",
       
P. Barpanda, S.K. Behera, P.K. Gupta, S.K. Pratihar, S. Bhattacharya,
       Journal of the European Ceramic Society, 
26(13), 2603-2609, 2006.
       DOI: https://doi.org/10.1016/j.jeurceramsoc.2005.04.032
       Keywords: X-ray methods, spectroscopy, chemical preparation, spinels, MgAl2O4​

J003. "Off-axis electron holography of pseudo-spin-valve thin-film magnetic elements",
       
T. Kasama, P. Barpanda, R.E. Dunin-Borkowski, S. Newcomb, F. Castano, C.A. Ross,
       Journal of Applied Physics, 
98(1), 013903(1-7), 2005.
       DOI: https://doi.org/10.1063/1.1943511
       Keywords: pseudo-spin-valves, magnetic switching, electron holography, micromagnetic simulation, hysteresis​

J002. "Compression strength of saline water-exposed epoxy system containing fly ash particles",
       
Kishore, P. Barpanda, S.M. Kulkarni,
       Journal of Reinforced Plastics and Composites, 
24(15), 1567-1576, 2005.
       DOI: https://doi.org/10.1177/0731684405050390
       Keywords: epoxy, fly ash, saline water exposure, compression strength, fractography​

J001. "Synthesis of magnesium-aluminium spinel from autoignition of citrate-nitrate gel",
       
S.K. Behera, P. Barpanda, S.K. Pratihar, S. Bhattacharya,
       Materials Letters, 
58(9), 1451-1455, 2004.
       DOI: https://doi.org/10.1016/j.matlet.2003.10.004
       Keywords: autoignition, citrate-nitrate gel, black ash, order-disorder, Mag-Al spinel
​​
"Learn from Nature, Her Secret is Patience."
​
Copyright (C) 2015-2025.      Professor Prabeer Barpanda.     All Rights Reserved.
Faraday Materials Laboratory (FaMaL), Materials Research Centre (MRC), Indian Institute of Science (IISc), Bangalore, BHARAT.
[Query/Suggestion/Contact: prabeer-AT-iisc.ac.in, +91 94495 20638]
Web Created: 14 March 2015    |    Last Updated: 31 March 2025
[Best viewed with Microsoft Edge/ Google Chrome/ Mozilla Firefox Browsers]