"......... Tamaso Maa Jyotirgamaya".
"Try not to become a man of success, but rather try to become a man of values."----- Albert Einstein ___________________________________________________________________________________________________________
MG3. "Physical and electrochemical investigation of halide modified activated carbons",
P. Barpanda,
Ph. D. Thesis, Rutgers University, New Jersey, USA. [December 2008]
Advisor: Prof. Glenn G. Amatucci
P. Barpanda,
Ph. D. Thesis, Rutgers University, New Jersey, USA. [December 2008]
Advisor: Prof. Glenn G. Amatucci
MG2. "Phase-diagram of chain-of ferromagnetic Fe-Ni nanosphere: A micromagnetic study",
P. Barpanda,
M. Phil. Thesis, The University of Cambridge, UK. [October 2004]
Advisor: Prof. Rafal E. Dunin-Borkowski
P. Barpanda,
M. Phil. Thesis, The University of Cambridge, UK. [October 2004]
Advisor: Prof. Rafal E. Dunin-Borkowski
MG1. "Auto-combustion synthesis of Mag-Al spinel: Structural ordering and densification kinetics",
P. Barpanda,
B. Engg. Thesis, National Institute of Technology Rourkela, Bharat. [May 2002]
Advisor: Prof. Santanu Bhattacharya and Prof. Swadesh Pratihar
P. Barpanda,
B. Engg. Thesis, National Institute of Technology Rourkela, Bharat. [May 2002]
Advisor: Prof. Santanu Bhattacharya and Prof. Swadesh Pratihar
BC03. "Development of polyanionic sodium-ion battery insertion materials",
S. Singh, S.P. Vanam, S. Lochab, M. Fichtner, P. Barpanda,
Comprehensive Inorganic Chemistry- III, Vol 7, pp. 241-271.
Editors: K. Stevenson, E. Antipov, A. Abakumov,
Editors-in-Chief: J. Reedijk, K.R. Poeppelmeier,
Oxford, Elsevier Publications, 2023. [ISBN: 978-0-128-23153-1]
S. Singh, S.P. Vanam, S. Lochab, M. Fichtner, P. Barpanda,
Comprehensive Inorganic Chemistry- III, Vol 7, pp. 241-271.
Editors: K. Stevenson, E. Antipov, A. Abakumov,
Editors-in-Chief: J. Reedijk, K.R. Poeppelmeier,
Oxford, Elsevier Publications, 2023. [ISBN: 978-0-128-23153-1]
BC02. "Chapter-7: Fluorine-based polyanionic compounds for high-voltage electrode materials",
P. Barpanda, J.M. Tarascon,
Lithium Batteries: Advanced Technologies and Applications.
Wiley Publications, 2013.
Editors: B. Scrosati, K.M. Abraham, W. van Schalkwijk, J. Hassoun
P. Barpanda, J.M. Tarascon,
Lithium Batteries: Advanced Technologies and Applications.
Wiley Publications, 2013.
Editors: B. Scrosati, K.M. Abraham, W. van Schalkwijk, J. Hassoun
BC01. "Carbon-halide nanocomposites: Structure, morphology and electrochemistry",
P. Barpanda,
VDM-Verlag Publications, 2009.
[ISBN: 978-3-639-12061-5]
P. Barpanda,
VDM-Verlag Publications, 2009.
[ISBN: 978-3-639-12061-5]
J149. "Na0.5Bi0.5TiO3 perovskite anode for lithium-ion battery",
S. Chintha, S. Atif, A. Chaupatnaik, A. Golubnichiy, A.M. Abakumov, P. Barpanda,
Sustainable Energy & Fuels, xx, xxxxx, 2024.
DOI: https://doi.org/10.1039/D4SE00953E
Keywords: Li-ion batteries, anodes, perovskites, Bi-based oxides, conversion-alloying
[Invited Article]
J148. "Perovskite oxides with Pb at B-site as Li-ion battery anodes",
S. Atif, A. Chaupatnaik, A. Rao, A. Padhy, S. Chintha, P. Nukala, M. Fichtner, P. Barpanda,
Electrochimica Acta, 502, 144838, 2024.
DOI: https://doi.org/10.1016/j.electacta.2024.144838
Keywords: Li-ion batteries, anodes, perovskites, conversion, alloying, electron microscopy
J147. "An alternative polymorph of the hydroxysulfate LixFeSO4OH yields improved lithium-ion cathodes",
S. Singh, A. Chakraborty, A. Neveu, P.K. Jha, V. Pralong, M. Fichtner, M.S. Islam, P. Barpanda,
Chemistry of Materials, 36(16), 8088-8097, 2024.
DOI: https://doi.org/10.1021/acs.chemmater.4c01652
Keywords: Li-ion battery, polyanion cathode, low-cost cathode, operando techniques, computational modelling
J146. "Chimie douce derived novel P2-type layered oxide for potassium-ion batteries",
P.K. Jha, A. Golubnichiy, D. Sachdeva, A. Banerjee, G.S. Gautam, M. Fichtner, A.M. Abakumov, P. Barpanda,
Advanced Functional Materials, 34(41), 2410665, 2024.
DOI: https://doi.org/10.1002/adfm.202410665
Keywords: potassium-ion batteries, cathodes, chimie douce, P2 layer oxides, energy storage
[Invited Article] [Highlighted in Cover Image]
J145. "A 3.2 V binary layered oxide cathode for potassium-ion batteries",
P.K. Jha, S.K. Parate, K. Sada, K. Yoshii, T. Masese, P. Nukala, G.S. Gautam, V. Pralong, M. Fichtner, P. Barpanda,
Small, 20(37), 2402204, 2024.
DOI: https://doi.org/10.1002/smll.202402204
Keywords: potassium-ion batteries, cathodes, P3-type layered oxides, energy storage
[Highlighted in Cover Image]
J144. "Bifunctional strontium cobalt molybdenum oxide (Sr2CoMoO6) perovskite as an efficient catalyst for electrochemical water
splitting reactions in alkaline media",
S. Atif, A. Padhy, P.K. Jha, D. Sachdeva, P. Barpanda,
ChemCatChem, 16(17), e202400217, 2024.
DOI: https://doi.org/10.1002/cctc.202400217
Keywords: water splitting, oxygen evolution reaction, hydrogen evolution reaction, perovskite, bifunctional electrocatalyst
[Invited Article] [Hot Topics: Water Splitting Society Volumes: Germany] [Highlighted in Cover Image]
J143. "Unveiling the degradation mechanism of sodium ion batteries based on Na4Fe3(PO4)2P2O7 cathode and hard carbon anode
suggests anode particle size reduction for cycling stability",
S. Lochab, S. Bharathraj, K.S. Mayya, P. Barpanda, S.P. Adiga,
Batteries & Supercaps, 7(8), e202400025, 2024.
DOI: https://doi.org/10.1002/batt.202400025
Keywords: sodium ion batteries, mixed phosphate cathode, hard carbon, single particle modeling, cycling stability
[Highlighted in Cover Image]
J142. "High-entropy materials for sodium-ion batteries",
G. Caroline, N. Nair, S.V. Nair, P. Barpanda, B. Senthilkumar,
Next Sustainability, 4, 100044, 2024.
DOI: https://doi.org/10.1016/j.nxsust.2024.100044
Keywords: sodium-ion batteries, capacity, high-entropy, cathodes, layered metal oxides
[Invited Review Article]
J141. "Role of Co content on the electrode properties of P3-type K0.5Mn1-xCoxO2 potassium insertion materials",
P.K. Jha, P. Barpanda,
Inorganic Chemistry, 63(16), 7137-7145, 2024.
DOI: https://doi.org/10.1021/acs.inorgchem.3c03747
Keywords: potassium-ion batteries, cathodes, P3 type oxides, capacity
[Highlighted in Cover Image]
J140. "Single crystal P2-type Na0.67Mn0.67Ni0.33O2 sodium insertion material with improved cycling stability",
V. Pamidi, C. Naranjo, S. Fuchs, H.S. Stein, T. Diemant, Y. Li et al., Y. Hu, S. Trivedi, M.A. Reddy, P. Barpanda, M. Fichtner,
ACS Applied Materials & Interfaces, 16(20), 25953-25965, 2024.
DOI: https://doi.org/10.1021/acsami.3c15348
Keywords: sodium-ion batteries, layered oxides, single crystal cathodes, inorganic aqueous binders, thermal stability
J139. "Phosphate-based polyanionic insertion materials for oxygen electrocatalysis",
R. Gond, J. Zhu, P. Barpanda,
Materials Chemistry Frontiers, 8(5), 1153-1170, 2024.
DOI: https://doi.org/10.1039/D3QM01088K
Keywords: electrocatalysis, oxygen reduction, oxygen evolution, polyanions, phosphates
[Invited Article] [2024 Themed Collection of Review Articles] [Highlighted in Outside Front Cover Image]
J138. "Greener, safer and better performing aqueous binder for positive electrode manufacturing of sodium ion batteries",
R. Xu, V. Pamidi, Y. Tang, S. Fuchs, H. Stein, B. Dasari, Z. Zhao, S. Behara, Y. Hu, S. Trivedi, M. Reddy, P. Barpanda, M. Fichtner,
ChemSusChem, 17(8), e202301154, 2024.
DOI: https://doi.org/10.1002/cssc.202301154
Keywords: inorganic binders, aqueous binders, surface coatings, lithium-ion batteries, sodium-ion batteries
[Special Issue: Post-Lithium Storage - Shaping the future]
J137. "Water-soluble inorganic binders for lithium-ion and sodium-ion batteries",
S. Trivedi, V. Pamidi, S.P. Bautista, F.N.A. Shamsudin, M. Weil, P. Barpanda, D. Bresser, M. Fichtner,
Advanced Energy Materials, 14(9), 2303338, 2024.
DOI: https://doi.org/10.1002/aenm.202303338
Keywords: inorganic binders, aqueous binders, surface coatings, lithium-ion batteries, sodium-ion batteries
[Special Issue: Post-Lithium Storage - Shaping the future] [Highlighted in Inside Back Cover Image]
J136. "Iron-based fluorophosphate Na2FePO4F as a cathode for aqueous zinc-ion batteries",
D. Singh, Y. Hu, S.S. Meena, R. Vengarathody, M. Fichtner, P. Barpanda,
Chemical Communications, 59(97), 14391-14394, 2023.
DOI: https://doi.org/10.1039/D3CC04940J
Keywords: zinc-ion batteries, cathodes, polyanions, fluorophosphate, spectroscopy
[Highlighted in Inside Cover Image]
J135. "Evaluation of P3-type layered oxides as K-ion battery cathodes",
P.K. Jha, S.N. Totade, P. Barpanda, G.S. Gautam,
Inorganic Chemistry, 62(37), 14971-14979, 2023.
DOI: https://doi.org/10.1021/acs.inorgchem.3c01686
Keywords: batteries, cathodes, P3 layered oxides, phase stability, DFT calculations
J134. "Zinc substituted cobalt phosphate [ZnCo2(PO4)2] as a bifunctional electrocatalyst",
D. Singh, S. Singh, P.K. Prasanna, R.K. Rai, P. Chirawatkul, S. Chakraborty, M. Fichtner, P. Barpanda,
Inorganic Chemistry, 62(31), 12345-12355, 2023.
DOI: https://doi.org/10.1021/acs.inorgchem.3c01367
Keywords: cobalt phosphate, bifunctional electrocatalysts, ORR, OER, DFT calculations
[Highlighted in Cover Image]
J133. "Calorimetric study of mixed phosphates Na4M3(PO4)2P2O7 (M = Mn, Fe, Co, Ni) to evaluate the electrochemical trends",
K. Jayanthi, S. Lochab, P. Barpanda, A. Navrotsky,
Journal of Physical Chemistry C, 127(24), 11700-11706, 2023.
DOI: https://doi.org/10.1021/acs.jpcc.3c01975
Keywords: calorimetry, Na-ion batteries, cathodes, phosphates, energetics
J132. "P3 type layered oxide frameworks: An appealing family of insertion materials for K-ion batteries",
P.K. Jha, V. Pralong, M. Fichtner, P. Barpanda,
Current Opinion in Electrochemistry, 38, 101216, 2023.
DOI: https://doi.org/10.1016/j.coelec.2023.101216
Keywords: K-ion batteries, cathodes, layered oxides, P3 frameworks
[Special Issue: Emerging Materials and Designs for Energy Storage] [Invited Article] [Highlighted in Front Cover Image]
J131. "Eldfellite NaV(SO4)2 as a versatile cathode insertion host for Li-ion and Na-ion batteries",
S. Singh, D. Singh, R. Ahuja, M. Fichtner, P. Barpanda,
Journal of Materials Chemistry A, 11(8), 3975-3986, 2023.
DOI: https://doi.org/10.1039/D2TA03673H
Keywords: batteries, cathodes, eldfellite, polyanions, capacity, DFT
[Highlighted in Inside Front Cover Image]
J130. "A new high voltage alluaudite sodium battery insertion material",
P. Barman, P.K. Jha, A. Chaupatnaik, K. Jayanthi, R. Prasada Rao, G.S. Gautam, S. Franger, A. Navrotsky, P. Barpanda,
Materials Today Chemistry, 27, 101316, 2023.
DOI: https://doi.org/10.1016/j.mtchem.2022.101316
Keywords: batteries, cathodes, alluaudite, molybdates, ionic conductivity, high-voltage
[Special Issue: E-MRS Spring Meeting 2022 Symposium G Special Issue]
J129. "Probing capacity trends in MLi2Ti6O14 lithium-ion battery anodes using calorimetric studies",
K. Jayanthi, A. Chaupatnaik, P. Barpanda, A. Navrotsky,
ACS Omega, 7(46), 42482-42488, 2022.
DOI: https://doi.org/10.1021/acsomega.2c05701
Keywords: calorimetry, Li-ion batteries, anodes, titanates, energetics
J128. "First principles investigation of anionic redox in bisulfate lithium battery cathodes",
P.K. Jha, S. Singh, M. Shrivastava, P. Barpanda, G.S. Gautam,
Physical Chemistry Chemical Physics, 24(37), 22756-22767, 2022.
DOI: https://doi.org/10.1039/D2CP00473A
Keywords: Li-ion batteries, cathodes, bisulfates, DFT calculations, anionic redox
J127. "A molybdenum doped layer-spinel composite cathode material for sodium-ion battery",
S.P. Vanam, P. Barpanda,
Electrochimica Acta, 431, 141122, 2022.
DOI: https://doi.org/10.1016/j.electacta.2022.141122
Keywords: sodium-ion battery, P2-layer/spinel composite, P2-P2'' phase transition
[Special Issue: Recent Advances in Sodium Ion Batteries]
J126. "Pyrophosphate Na2CoP2O7 polymorphs as efficient bifunctional oxygen electrocatalysts for zinc-air batteries",
R. Gond, S. Singh, X. Zhao, D. Singh, R. Ahuja, M. Fichtner, P. Barpanda,
ACS Applied Materials & Interfaces, 14(36), 40761-40770, 2022.
DOI: https://doi.org/10.1021/acsami.2c06944
Keywords: cobalt pyrophosphates, bifunctional electrocatalysts, ORR, OER, DFT calculations, zinc-air battery
J125. "Facile synthesis and phase stability of Cu-based Na2Cu(SO4)2.xH2O (x = 0-2) sulfate minerals as
conversion type battery electrodes",
S. Singh, A. Neveu, K. Jayanthi, T. Das, S. Chakraborty, A. Navrotsky, V. Pralong, P. Barpanda,
Dalton Transactions, 51(29), 11169-11179, 2022.
DOI: https://doi.org/10.1039/D2DT01830`F
Keywords: sulfate cathode, saranchinite, krohnkite, conversion reaction, cathode, battery
J124. "Bio-waste derived highly porous N-doped carbon as low-cost bifunctional electrocatalyst for hybrid sodium-air batteries",
C. Murugesan, B. Senthilkumar, P. Barpanda,
ACS Sustainable Chemistry & Engineering, 10(28), 9077-9086, 2022.
DOI: https://doi.org/10.1021/acssuschemeng.2c01300
Keywords: bio-waste, highly porous carbon, N/S doping, bifunctional electrocatalyst, hybrid Na-air battery
[Highlighted in Cover Image]
J123. "Aqueous spray-drying synthesis of alluaudite Na2+2xFe2-x(SO4)3 sodium insertion material:
Studies of electrochemical activity, thermodynamic stability and humidity induced phase transformation",
P. Barman, D. Dwibedi, K. Jayanthi, S.S. Meena, S. Nagendran, A. Navrotsky, P. Barpanda,
Journal of Solid State Electrochemistry, 26(9), 1941-1950, 2022.
DOI: https://doi.org/10.1007/s10008-022-05142-w
Keywords: sodium-ion battery, cathode, alluaudite, capacity, phase transition
[Special issue in celebration of the 70th birthday of Prof. Doron Aurbach]
J122. "Manganese-based tunnel type cathode materials for secondary Li-ion and K-ion batteries",
S.P. Vanam, B. Senthilkumar, P. Amonpattaratkit, P. Barpanda,
Inorganic Chemistry, 61(9), 3959-3969, 2022.
DOI: https://doi.org/10.1021/acs.inorgchem.1c03609
Keywords: Li-ion battery, K-ion battery, tunnel-type Na0.44MnO2, structure, capacity
J121. "Potassium cobalt pyrophosphate as a non-precious bifunctional electrocatalyst for zinc-air batteries",
K. Sada, R. Gond, N. Bothra, S.K. Pati, P. Barpanda,
ACS Applied Materials & Interfaces, 14(7), 8992-9001, 2022.
DOI: https://doi.org/10.1021/acsami.1c21481
Keywords: cobalt pyrophosphate, bifunctional electrocatalyst, ORR, OER, zinc-air batteries
J120. "Magnetic structure of fluorophosphate Na2MnPO4F sodium battery material",
S. Lochab, S. Rayaprol, M. Avdeev, L. Sharma, P. Barpanda,
Journal of Solid State Chemistry, 308, 122926, 2022.
DOI: https://doi.org/10.1016/j.jssc.2022.122926
Keywords: magnetic structure, neutron powder diffraction, sodium battery, fluorophosphate, Na2MnPO4F
J119. "Structural change induced by electrochemical sodium extraction from layered O'3-NaMnO2",
K. Kubota, M. Miyazai, E.J. Kim, H. Yoshida, P. Barpanda, S. Komaba,
Journal of Materials Chemistry A, 9(47), 26810-26819, 2021.
DOI: https://doi.org/10.1039/D1TA05390F
Keywords: sodium-ion batteries, layered O'3-NaMnO2, in-situ X-ray diffraction, cycling stability
J118. "Crystal and magnetic structures of monoclinic FeOHSO4",
M. Avdeev, S. Singh, P. Barpanda, C.D. Ling,
Inorganic Chemistry, 60(20), 15128-15130, 2021.
DOI: https://doi.org/10.1021/acs.inorgchem.1c02544
Keywords: crystal structure, magnetic properties, magnetic structure, neutron diffraction, hydroxysulfate
J117. "Cobalt tetraphosphate as an efficient bifunctional electrocatalyst for hybrid sodium-air batteries",
C. Murugesan, S.P. Panjalingam, S. Lochab, R.K. Rai, X.F. Zhao, D. Singh, R. Ahuja, P. Barpanda,
Nano Energy, 89(B), 106485, 2021.
DOI: https://doi.org/10.1016/j.nanoen.2021.106485
Keywords: cobalt tetraphosphate, bifunctional electrocatalyst, NASICON, OER, ORR, hybrid Na-air batteries
J116. "An overview of hydroxy-based polyanionic cathode insertion materials for metal-ion batteries",
S. Singh, S. Lochab, L. Sharma, V. Pralong, P. Barpanda,
Physical Chemistry Chemical Physics, 23(34), 18283-18299, 2021.
DOI: https://doi.org/10.1039/D1CP01741A
Keywords: batteries, cathodes, polyanions, hydroxy-based insertion materials, capacity
[Invited Perspective Article] [Themed Collection of Perspectives]
J115. "Marinite Li2Ni(SO4)2 as a new member of bisulfate family of high-voltage lithium battery cathodes",
S. Singh, P.K. Jha, M. Avdeev, W. Zhang, K. Jayanthi, A. Navrotsky, H. N. Alshareef, P. Barpanda,
Chemistry of Materials, 33(15), 6108-6119, 2021.
DOI: https://doi.org/10.1021/acs.chemmater.1c01669
Keywords: Li-ion battery, cathode, bisulfates, crystallography, DFT, calorimetry
J114. "Cobalt metaphosphates as economic bifunctional electrocatalysts for hybrid sodium-air batteries",
C. Murugesan, M. Musthafa, S. Lochab, P. Barpanda,
Inorganic Chemistry, 60(16), 11974-11983, 2021.
DOI: https://doi.org/10.1021/acs.inorgchem.1c01009
Keywords: hybrid Na-air battery, electrocatalysts, bifunctionality, metaphosphates
J113. "Perovskite lead-based oxide anodes for rechargeable batteries",
A. Chaupatnaik, P. Barpanda,
Electrochemistry Communications, 127, 107038, 2021.
DOI: https://doi.org/10.1016/j.elecom.2021.107038
Keywords: battery, anode materials, perovskite, PbTiO3
[Invited Article]
J112. "Performance evaluation of LiFePO4OH cathode for stationary storage applications using a reduced order
electrochemical model",
L. Sharma, S. Bharathraj, P. Barpanda, S.P. Adiga, K.S. Mayya,
ACS Applied Energy Materials, 4(1), 1021-1032, 2021.
DOI: https://doi.org/10.1021/acsaem.0c03049
Keywords: Li-ion battery, hydroxyphosphate, electrochemical modeling, Co-free cathodes, cycling efficiency, Ragone plots
J111. "Electrochemical insertion of potassium ions in Na4Fe3(PO4)2P2O7 mixed phosphate",
B. Senthilkumar, C. Murugesan, K. Sada, P. Barpanda,
Journal of Power Sources, 480, 228794, 2020.
DOI: https://doi.org/10.1016/j.jpowsour.2020.228794
Keywords: potassium-ion batteries, Na4Fe3(PO4)2P2O7, 3D pathway, cathode, mixed polyanion, capacity
J110. "Metal fluorophosphate polyanionic insertion hosts as efficient bifunctional electrocatalysts for oxygen evolution
and reduction reactions",
L. Sharma, N. Bothra, R.K. Rai, S. Pati, P. Barpanda,
Journal of Materials Chemistry A, 8(36), 18651-18658, 2020.
DOI: https://doi.org/10.1039/D0TA05880G
Keywords: electrocatalysis, bifunctionality, metal-air batteries, polyanion, fluorophosphates
[Highlighted in Inside Front Cover Image]
J109. "Fluorophosphates: Next generation cathode materials for rechargeable batteries",
L. Sharma, S.P. Adiga, H.N. Alshareef, P. Barpanda,
Advanced Energy Materials, 10(43), 2001449, 2020.
DOI: https://doi.org/10.1002/aenm.202001449
Keywords: batteries, cathodes, polyanions, fluorophosphates, capacity, electrocatalysis
[Hot Topic: Batteries and Supercapacitors]
J108. "Operando sodiation mechanistic study of a new antimony based intermetallic CoSb as high performance
sodium ion battery anode",
S. Sarkar, A. Chaupatnaik, S.D. Ramarao, U. Subbarao, P. Barpanda, S.C. Peter,
Journal of Physical Chemistry C, 124(29), 15757-15768, 2020.
DOI: https://doi.org/10.1021/acs.jpcc.0c03556
Keywords: sodium-ion battery, intermetallics, antimonide, ex-situ mechanism
[Special Issue "Hellmut Eckert Festschrift"]
J107. "Design of zinc-substituted cobalt (pyro)phosphates as efficient bifunctional electrocatalysts for zinc-air batteries",
A. Baby, D. Singh, C. Murugesan, P. Barpanda,
Chemical Communications, 56, 8400-8403, 2020.
DOI: https://doi.org/10.1039/D0CC01631D
Keywords: cobalt (pyro)phosphates, bifunctional, electrocatalyst, zinc-air battery
J106. "Alluaudite battery cathodes",
D. Dwibedi, P. Barpanda, A. Yamada,
Small Methods, 4(7), 2000051, 2020.
DOI: https://doi.org/10.1002/smtd.202000051
Keywords: alluaudite-based batteries, alluaudites, cathodes, secondary batteries
[Invited Review]
J105. "P3-type layered K0.48Mn0.4Co0.6O2: a novel cathode material for potassium-ion batteries",
K. Sada, P. Barpanda,
Chemical Communications, 56(15), 2272-2275, 2020.
DOI: https://doi.org/10.1039/C9CC06657H
Keywords: potassium-ion battery, oxide cathodes, capacity, solid-solution redox mechanism
J104. "Iron-based mixed phosphate Na4Fe3(PO4)2P2O7 thin films for sodium-ion micro-batteries",
B. Senthilkumar, A. Rambabu, C. Murugesan, S.B. Krupanidhi, P. Barpanda,
ACS Omega, 5(13), 7219-7224, 2020.
DOI: https://doi.org/10.1021/acsomega.9b03835
Keywords: mixed polyanion, sodium-ion battery, thin film, capacity, pulsed laser deposition
J103. "Potassium-ion intercalation in anti-NASICON-type iron molybdate Fe2(MoO4)3",
B. Senthilkumar, R.K. Selvan, P. Barpanda,
Electrochemistry Communications, 110, 106617, 2020.
DOI: https://doi.org/10.1016/j.elecom.2019.106617
Keywords: potassium-ion batteries, polyanion, NASICON, iron molybdate, capacity
J102. "Fluorophosphates as efficient bifunctional electrocatalysts for metal-air batteries",
L. Sharma, R. Gond, B. Senthilkumar, A. Roy, P. Barpanda,
ACS Catalysis, 10(1), 43-50, 2020.
DOI: https://doi.org/10.1021/acscatal.9b03686
Keywords: fluorophosphates, bifunctional, electrocatalyst, air-battery, efficiency
J10`1. "Revisiting the layered Na3Fe3(PO4)4 phosphate sodium insertion compound: Structure, magnetic and electrochemical study",
G.S. Shinde, R. Gond, M. Avdeev, C.D. Ling, R. Prasada Rao, S. Adams, P. Barpanda,
Materials Research Express, 7, 014001, 2020.
DOI: https://doi.org/10.1088/2053-1591/ab54f4
Keywords: Na-ion batteries, cathode, Na3Fe3(PO4)4, layered structure, BVSE calculation
[Focus Issue on Materials Research in India] [Invited Article]
J100. "Polymorphism and temperature-induced phase transitions of Na2CoP2O7",
M. Avdeev, C.W. Wang, P. Barpanda, K. Fujii, M. Yashima,
Inorganic Chemistry, 58(24), 16823-16830, 2019.
DOI: https://doi.org/10.1021/acs.inorgchem.9b03014
Keywords: pyrophosphates, neutron diffraction, polymorphism, phase transitions
J099. "Cryptomelane K1.33Mn8O16 as a cathode for rechargeable aqueous zinc-ion batteries",
K. Sada, B. Senthilkumar, P. Barpanda,
Journal of Materials Chemistry A, 7, 23981-23988, 2019.
DOI: https://doi.org/10.1039/C9TA05836B
Keywords: aqueous zinc-ion batteries, cathode, cryptomelane, sonochemical synthesis, capacity
[2019 Emerging Investigators Themed Issue of Journal of Materials Chemistry A]
J098. "Alluaudite NaCoFe2(PO4)3 as a 2.9 V cathode for sodium-ion batteries exhibiting bifunctional electrocatalytic activity",
D. Dwibedi, R. Gond, P. Barpanda,
Chemistry of Materials, 31(18), 7501-7509, 2019.
DOI: https://doi.org/10.1021/acs.chemmater.9b02220
Keywords: sodium-ion batteries, alluaudite, bond valence sum analysis, diffusion, electrochemistry, electrocatalysis
J097. "Na2MnP2O7 polymorphs as efficient bifunctional catalysts for oxygen reduction and oxygen evolution reactions",
R. Gond, S.P. Vanam, P. Barpanda,
Chemical Communications, 55, 11595-11598, 2019.
DOI: https://doi.org/10.1039/C9CC04680A
Keywords: polymorphism, Na2MnP2O7, bifunctional electrocatalysts, oxygen reduction, oxygen evolution
J096. "Cobalt and nickel phosphates as multifunctional air-cathodes for rechargeable hybrid sodium-air battery applications",
B. Senthilkumar, I. Ahmad, P. Barpanda,
ACS Applied Materials & Interfaces, 11(37), 33811-33818, 2019.
DOI: https://doi.org/10.1021/acsami.9b09090
Keywords: nickel cobalt phosphate, hybrid sodium-air battery, bifunctional electrocatalyst, aqueous electrolyte, NASICON
J095. "Structural and electrochemical investigation of binary Na2Fe1-xZnxP2O7 (O < x < 1) pyrophosphate cathodes for
sodium-ion batteries",
R. Gond, S.S. Meena, V. Pralong, P. Barpanda,
Journal of Solid State Chemistry, 277, 329-336, 2019.
DOI: https://doi.org/10.1016/j.jssc.2019.06.027
Keywords: sodium-ion battery, pyrophosphate, solid-solution, cathode, (de)insertion
J094. "Reactive template synthesis of Li1.2Mn0.54Ni0.13Co0.13O2 nanorod cathode for Li-ion batteries: Influence of temperature
over structural and electrochemical properties",
M. Vivekanantha, C. Senthil, T. Kesavan, T. Partheeban, M. Navaneethan, B. Senthilkumar, P. Barpanda, M. Sasidharan,
Electrochimica Acta, 317, 398-407, 2019.
DOI: https://doi.org/10.1016/j.electacta.2019.05.095
Keywords: reactive template, nanorods, lithium-rich oxide, high specific capacity, rate capability
J093. "Sodium cobalt metaphosphate as an efficient oxygen evolution reaction catalyst in alkaline solution",
R. Gond, D.K. Singh, M. Eswaramoorthy, P. Barpanda,
Angewandte Chemie International Edition, 58(25), 8330-8335, 2019.
DOI: https://doi.org/10.1002/anie.201982561
Keywords: metaphosphate, combustion, oxygen evolution reaction, hydrogen economy
[Highlighted in Frontispiece Picture]
J092. "Low cost, fast, template free synthesis of nanoscale zinc spinels for energy storage and electrocatalytic applications",
A. Baby, B. Senthilkumar, P. Barpanda,
ACS Applied Energy Materials, 2(5), 3211-3219, 2019.
DOI: https://doi.org/10.1021/acsaem.9b00054
Keywords: spinel, combustion synthesis, aqueous Zn-ion battery, oxygen reduction reaction, electrocatalyst
J091. "Tavorite LiFePO4OH hydroxyphosphate as an anode for aqueous lithium-ion batteries",
L. Sharma, K. Nakamoto, S. Okada, P. Barpanda,
Journal of Power Sources, 429, 17-21, 2019.
DOI: https://doi.org/10.1016/j.jpowsour.2019.04.110
Keywords: aqueous Li-ion batteries, anode, tavorite, hydroxyphosphate, LiFePO4OH
J090. "An overview on nanostructured Li-based thin film micro-batteries",
A. Rambabu, S.B. Krupanidhi, P. Barpanda,
Proceedings of the Indian National Science Academy, 85(1), 121-142, 2019.
DOI: https://doi.org/10.16943/ptinsa/2018/49472
Keywords: all-solid-state micro-batteries, thin films, cathodes, anodes, solid electrolytes
[Invited Review]
J089. "An overview of mixed polyanionic cathode materials for sodium-ion batteries",
B. Senthilkumar, C. Murugesan, L. Sharma, S. Lochab, P. Barpanda,
Small Methods, 3(4), 1800253, 2019.
DOI: https://doi.org/10.1002/smtd.201800253
Keywords: capacity, cathodes, mixed polyanions, sodium-ion batteries, voltage
[Special Issue: A New Emerging Technology- Na-ion Batteries] [Invited Review]
[Highlighted in Back Cover Image]
J088. "Narsarsukite Na2TiOSi4O10 as a low voltage silicate anode for rechargeable Li-ion and Na-ion batteries",
A. Chaupatnaik, M. Srinivasan, P. Barpanda,
ACS Applied Energy Materials, 2(3), 2350-2355, 2019.
DOI: https://doi.org/10.1021/acsaem.8b01906
Keywords: intercalation, lithium-ion battery, Na2TiOSi4O10, narsarsukite, sodium-ion battery
J087. "Superior potassium-ion hybrid capacitor based on novel P3-type layered K0.45Mn0.5Co0.5O2 as high capacity cathode",
H.V. Ramasamy, B. Senthilkumar, P. Barpanda, Y.S. Lee,
Chemical Engineering Journal, 368, 235-243, 2019.
DOI: https://doi.org/10.1016/j.cej.2019.02.172
Keywords: potassium-ion capacitor, P3-K0.45Mn0.5Co0.5O2, energy density, potassium-ion intercalation, capacity
J086. "Ultrasonic sonochemical synthesis of Na0.44MnO2 insertion material for sodium-ion batteries",
G.S. Shinde, P.D. Nayak, V.S. Pranav, S.K. Jain, A. Pathak, S. Sanyal, J. Balachandran, P. Barpanda,
Journal of Power Sources, 416, 50-55, 2019.
DOI: https://doi.org/10.1016/j.jpowsour.2019.01.161
Keywords: Na-ion battery, cathode, Na0.44MnO2, sonochemical synthesis, capacity
[Special Issue related to IBA-2018 Meeting at Jeju Islands, South Korea]
J085. "Operando structural and electrochemical investigation of Li1.5V3O8 nanorods in Li-ion batteries",
T. Partheeban, T. Kesavan, M. Vivekanantha, B. Senthilkumar, P. Barpanda, M. Sasidharan,
ACS Applied Energy Materials, 2(1), 852-859, 2019.
DOI: https://doi.org/10.1021/acsaem.8b019015
Keywords: Lithium-ion batteries, cathode, Li1.5V3O8, nanorods, in-situ X-ray diffraction, capacity
J084. "In-situ neutron diffraction studies of LiCe(WO4)2 polymorphs: Phase transition and structure-property correlation",
A.K. Munirathnappa, D. Dwibedi, J. Hester, P. Barpanda, D. Swain, C. Narayana, N.G. Sundaram,
Journal of Physical Chemistry C, 123(2), 1041-1049, 2019.
DOI: https://doi.org/10.1021/acs.jpcc.8b09364
Keywords: Li-ion batteries, anodes, LiCe(WO4)2, neutron diffraction, phase transition, polymorphism
J083. "Diffusional and electrochemical investigation of combustion synthesized BaLi2Ti6O14 titanate anode
for rechargeable batteries",
A. Chaupatnaik, P. Barpanda,
Journal of Materials Research, 34(1), 158-168, 2019.
DOI: https://doi.org/10.1557/jmr.2018.250
Keywords: combustion synthesis, energy storage, Li
[Annual Issue: Early Career Scholars in Materials Science 2019]
J082. "Na2FePO4F fluorophosphate as positive insertion material for aqueous sodium-ion batteries",
L. Sharma, K. Nakamoto, R. Sakamoto, S. Okada, P. Barpanda,
ChemElectroChem, 6(2), 444-449, 2019.
DOI: https://doi.org/10.1002/celc.201801314
Keywords: aqueous sodium-ion batteries, cathode materials, fluorophosphates, Na2FePO4F, NaTi2(PO4)3 anode
J081. "Swift combustion synthesis of PbLi2Ti6O14 anode for lithium-ion batteries: Diffusional and electrochemical investigation",
A. Chaupatnaik, P. Barpanda,
Journal of the Electrochemical Society, 166(3), A5122-5130, 2019.
DOI: https://doi.org/10.1149/2.0191903jes
Keywords: Li-ion batteries, anode, titanate, PbLi2Ti6O14, combustion synthesis, diffusion
[Focus Issue related to IMLB-2018 Meeting at Kyoto, Japan]
J080. "Layered Na2Mn3O7 as a 3.1 V insertion material for Li-ion batteries",
K. Sada, B. Senthilkumar, P. Barpanda,
ACS Applied Energy Materials, 1(12), 6719-6724, 2018.
DOI: https://doi.org/10.1021/acsaem.8b01551
Keywords: capacity, intercalation mechanism, layered oxides, Li-ion batteries, Na2Mn3O7
J079. "Potassium-ion intercalation mechanism in layered Na2Mn3O7",
K. Sada, B. Senthilkumar, P. Barpanda,
ACS Applied Energy Materials, 1(10), 5410-5416, 2018.
DOI: https://doi.org/10.1021/acsaem.8b01016
Keywords: capacity, intercalation mechanism, layered oxides, PITT, potassium-ion battery
J078. "Revisiting the alluaudite NaMnFe2(PO4)3 sodium insertion material: Structural, diffusional and electrochemical insights",
D. Dwibedi, P.W. Jaschin, R. Gond, P. Barpanda,
Electrochimica Acta, 283, 850-857, 2018.
DOI: https://doi.org/10.1016/j.electacta.2018.06.178
Keywords: sodium-ion battery, alluaudite, combustion, bond valence site energy, conductivity
J077. "Ultra-rapid combustion synthesis of Na2FePO4F fluorophosphate host for Li-ion and Na-ion insertion",
L. Sharma, A. Bhatia, L. Assaud, S. Franger, P. Barpanda,
Ionics, 24(8), 2187-2192, 2018.
DOI: https://doi.org/10.1007/s11581-017-2376-3
Keywords: fluorophosphate, solution combustion, nanometric particles, capacity
[Special Issue: GARNET-2017 meeting at Pondicherry, Bharat]
J076. "Polyanionic insertion materials for sodium-ion batteries",
P. Barpanda, L. Lander, S. Nishimura, A. Yamada,
Advanced Energy Materials, 8(17), 1703055, 2018.
DOI: https://doi.org/10.1002/aenm.201703055
Keywords: batteries, electrodes, intercalation, polyanion, sodium
[Special Issue: Sodium-ion Batteries] [Invited Review]
J075. "Cubic sodium cobalt metaphosphate [NaCo(PO3)3] as a novel cathode material for sodium-ion batteries",
R. Gond, R. Prasada Rao, V. Pralong, O.I. Lebedev, S. Adams, P. Barpanda,
Inorganic Chemistry, 57(11), 6324-6332, 2018.
DOI: https://doi.org/10.1021/acs.inorgchem.8b00291
Keywords: sodium-ion batteries, cathode, metaphosphate, NaCo(PO3)3, bond valence site energy
J074. "Electrochemical and diffusional insights on combustion synthesized SrLi2Ti6O14 negative insertion material
for Li-ion batteries",
A. Dayamani, G.S. Shinde, A. Chaupatnaik, R. Prasada Rao, S. Adams, P. Barpanda,
Journal of Power Sources, 385, 122-129, 2018.
DOI: https://doi.org/10.1016/j.jpowsour.2018.03.021
Keywords: Li-ion battery, anodes, SrLi2Ti6O14, combustion, bond valence site energy
J073. "Preferentially oriented SrLi2Ti6O14 thin film anode for Li-ion micro-batteries fabricated by pulsed laser deposition",
A. Rambabu, B. Senthilkumar, A. Dayamani, S.B. Krupanidhi, P. Barpanda,
Electrochimica Acta, 269, 212-216, 2018.
DOI: https://doi.org/10.1016/j.electacta.2018.02.164
Keywords: thin-film batteries, pulsed laser deposition, Li-ion batteries, anodes, SrLi2Ti6O14
J072. "Earth-abundant alkali iron phosphates (AFePO4) as efficient electrocatalysts for oxygen reduction reaction in alkaline solution",
C. Murugesan, S. Lochab, B. Senthilkumar, P. Barpanda,
ChemCatChem, 10(5), 1122-1127, 2018.
DOI: https://doi.org/10.1002/cctc.201701423
Keywords: electrocatalysts, iron phosphates, maricite, oxygen reduction reaction, structure
J071. "Bifunctional electrocatalytic behaviour of sodium cobalt phosphates in alkaline solution",
R. Gond, S. Krishnakanth, B. Senthilkumar, P. Barpanda,
ChemElectroChem, 5(1), 153-158, 2018.
DOI: https://doi.org/10.1002/celc.201700873
Keywords: Na-air battery, bifunctional electrocatalyst, maricite, oxygen reduction reaction
J070. "In-situ deposition of Na2Ti6O13 thin film as anode for sodium-ion micro-batteries developed by pulsed laser deposition",
A. Rambabu, B. Senthilkumar, K. Sada, S.B. Krupanidhi, P. Barpanda,
Journal of Colloid and Interface Science, 514, 117-121, 2018.
DOI: https://doi.org/10.1016/j.jcis.2017.12.023
Keywords: pulsed laser deposition, thin-film, micro-batteries, Na2Ti6O13, sodium-ion batteries
J069. "Role of annealing temperature on cation ordering in hydrothermally prepared zinc aluminate (ZnAl2O4) spinel",
D. Dwibedi, M. Chinnasamy, M. Leskes, P. Barpanda,
Materials Research Bulletin, 98(10), 219-224, 2018.
DOI: https://doi.org/10.1016/j.materresbull.2017.10.010
Keywords: ceramics, solvothermal, Raman spectroscopy, X-ray diffraction, defects
J068. "Mechanistic study of Na-ion diffusion and small polaron formation in krohnkite Na2Fe(SO4)2.2H2O based cathode material",
T. Watcharatharapong, J. T-Thienprasert, P. Barpanda, R. Ahuja, S. Chakraborty,
Journal of Materials Chemistry A, 5(41), 21726-21739, 2017.
DOI: https://doi.org/10.1039/C7TA04508E
Keywords: Na-ion battery, krohnkite, Na2Fe(SO4)2.2H2O, diffusion, small hole polaron, DFT calculation
J067. "Electrochemical and diffusional investigation of Na2Fe(II)PO4F fluorophosphates sodium insertion material obtained
from Fe(III) precursor",
L. Sharma, P. Nayak, E. de la Llave, H. Chen, S. Adams, D. Aurbach, P. Barpanda,
ACS Applied Materials & Interfaces, 9(4), 34961-34969, 2017.
DOI: https://doi.org/10.1021/acsami.7b10637
Keywords: bond-valence site energy, combustion, fluorophosphate, Na-ion battery, Na2FePO4F
J066. "Electrochemical potassium-ion intercalation in NaxCoO2: A novel cathode material for potassium-ion batteries",
S. Krishnakanth, B. Senthilkumar, P. Barpanda,
Chemical Communications, 53(61), 8588-8591, 2017.
DOI: https://doi.org/10.1039/C7CC02791E
Keywords: potassium-ion batteries, intercalation, NaxCoO2, high rate capability, ex-situ XRD
J065. "Autocombustion synthesis of nanostructured Na2Ti6O13 negative insertion material for Na-ion batteries:
Electrochemical and diffusion mechanism",
S. Ghosh, A. Dayamani, B. Kishore, N. Munichandraiah, R. Prasada Rao, L.L. Wong, S. Adams, P. Barpanda,
Journal of the Electrochemical Society, 164(9), A1881-1886, 2017.
DOI: https://doi.org/10.1149/2.0641709jes
Keywords: autocombustion synthesis, BVSE mapping, Na batteries, Na2Ti6O13
J064. "Enabling the electrochemical activity in sodium iron metaphosphate [NaFe(PO3)3] sodium battery insertion materials:
Structural and electrochemical insights",
R. Gond, S.S. Meena, S.M. Yusuf, V. Shukla, N.K. Jena, R. Ahuja, S. Okada, P. Barpanda,
Inorganic Chemistry, 56(10), 5918-5929, 2017.
DOI: https://doi.org/10.1021/acs.inorgchem.7b00561
Keywords: Na batteries, metaphosphate, NaFe(PO3)3, Fe-redox activity, DFT calculation
J063. "Magnetic structure and properties of centrosymmetric twisted melilite K2CoP2O7",
M. Sale, M. Avdeev, Z. Mohamed, C.D. Ling, P. Barpanda,
Dalton Transactions, 46(19), 6409-6416, 2017.
DOI: https://doi.org/10.1039/C7DT00978J
Keywords: K2CoP2O7, melilite, neutron powder diffraction, ab-initio calculation, magnetic ordering
J062. "Na2.32Co1.84(SO4)3 as a new member of alluaudite family of high-voltage sodium battery cathode",
D. Dwibedi, R. Gond, A. Dayamani, R.B. Araujo, S. Chakraborty, R. Ahuja, P. Barpanda,
Dalton Transactions, 46(1), 55-63, 2017.
DOI: https://doi.org/10.1039/C6DT03767D
Keywords: Na-ion battery, alluaudite, Na2Co2(SO4)3, DFT, high-voltage cathode
[Highlighted in Inside Cover Page Image]
J061. "Porous, hollow Li1.2Mn0.53Ni0.13Co0.13O2 microspheres as a positive electrode material for Li-ion batteries",
S. Duraisamy, T. Penki Rao, B. Kishore, P. Barpanda, P.K. Nayak, D. Aurbach, N. Munichandraiah,
Journal of Solid State Electrochemistry, 21, 437-445, 2017.
DOI: https://doi.org/10.1007/s10008-016-3380-7
Keywords: sacrificial MnO2 template, hollow microspheres, Li-rich oxide, high discharge capacity, high rate capability
J060. "Sonochemical synthesis of nanostructured spinel Li4Ti5O12 negative insertion material for Li-ion and Na-ion batteries",
S. Ghosh, S. Mitra, P. Barpanda,
Electrochimica Acta, 222, 898-903, 2016.
DOI: https://doi.org/10.1016/j.electacta.2016.11.055
Keywords: Li4Ti5O12, anode, sonochemical synthesis, Li batteries, Na batteries
[Special issue related to the 19th Topical Meeting of International Society of Electrochemistry, Auckland, New Zealand]
J059. "Na2M2(SO4)3 (M= Fe, Mn, Co and Ni): Towards high voltage sodium battery applications",
R.B. Araujo, S. Chakraborty, P. Barpanda, R. Ahuja,
Physical Chemistry Chemical Physics, 18(14), 9658-9665, 2016.
DOI: https://doi.org/10.1039/C6CP00070C
Keywords: sodium-ion batteries, alluaudites, Na2M2(SO4)3, DFT calculations, electronic structure
J058. "Ionothermal synthesis of high-voltage alluaudite Na2+2xFe2-x(SO4)3 sodium insertion compound:
Structural, electronic and magnetic insights",
D. Dwibedi, C.D. Ling, R.B. Araujo, S. Chakraborty, S. Duraisamy, N. Munichandraiah, R. Ahuja, P. Barpanda,
ACS Applied Materials & Interfaces, 8(11), 6982-6991, 2016.
DOI: https://doi.org/10.1021/acsami.5b11302
Keywords: alluaudite, DFT, ionothermal synthesis, Na2Fe2(SO4)3, sodium-ion battery
J057. "Pursuit of sustainable iron-based positive insertion materials for sodium-ion batteries: Two case studies",
P. Barpanda,
Chemistry of Materials, 28(4), 1006-1011, 2016.
DOI: https://doi.org/10.1021/acs.chemmater.5b03926
Keywords: sodium-ion batteries, high energy density, oxides, polyanionic compounds, Fe-based cathodes
[Invited Perspective Article]|[Table of Content Image highlighted by editor]
J056. "Na2.44Mn1.79(SO4)3: A new member of alluaudite family of insertion compound for sodium ion batteries",
D. Dwibedi, R.B. Araujo, S. Chakraborty, P. Shanbogh, N. Sundaram, R. Ahuja, P. Barpanda,
Journal of Materials Chemistry A, 3(36), 18564-18571, 2015.
DOI: https://doi.org/10.1039/c5ta04527d
Keywords: Na-ion battery, alluaudite, Na2Mn2(SO4)3, DFT, high-voltage cathode
J055. "Role of fuel on cation disorder in magnesium aluminate (MgAl2O4) spinel prepared by combustion synthesis",
D. Dwibedi, M. Avdeev, P. Barpanda,
Journal of the American Ceramic Society, 98(9), 2908-2913, 2015.
DOI: https://doi.org/10.1111/jace.13705
Keywords: spinel, MgAl2O4, ordering, neutron diffraction, Raman spectroscopy
J054. "Insight into the limited electrochemical activity of NaVP2O7",
Y. Kee, N. Dimov, A. Staikov, P. Barpanda, Y.C. Lu, K. Minami, S. Okada,
RSC Advances, 5(80), 64991-64996, 2015.
DOI: https://doi.org/10.1039/c5ra12158b
Keywords: Na-ion battery, pyrophosphate, NaVP2O7, kinetics, energy barrier
[Themed Collection of Nanoscience and Nanotechnology in Electrochemistry]
J053. "Energy-savvy solid-state and sonochemical synthesis of lithium sodium titanate as an anode active material for Li-ion batteries",
S. Ghosh, Y. Kee, S. Okada, P. Barpanda,
Journal of Power Sources, 296, 276-281, 2015.
DOI: https://doi.org/10.1016/j.jpowsour.2015.07.057
Keywords: Li-ion battery, anode, titanium chemistry, sonochemical synthesis, nanomaterial
J052. "Lithium metal borate (LiMBO3) family of insertion materials for Li-ion batteries: A sneak peak",
P. Barpanda, D. Dwibedi, S. Ghosh, Y. Kee, S. Okada,
Ionics, 21(7), 1801-1812, 2015.
DOI: https://doi.org/10.1007/s11581-015-1463-6
Keywords: Li-ion battery, polyanion, borate, LiMBO3, polymorphism, capacity
[Invited Review]
J051. "Sulphate chemistry for high-voltage insertion materials: Synthetic, structural and electrochemical insights",
P. Barpanda,
Israel Journal of Chemistry, 55(5), 537-557, 2015.
DOI: https://doi.org/10.1002/ijch.201400157
Keywords: alkali metals, electrochemistry, polyanions, structure elucidation, sulfur
[Special issue on 'Next generation batteries: Materials and electrochemical systems']|[Invited Review]
J050. "An alluaudite Na2+2xFe2-x(SO4)3 (x = 0.2) derivative phase as an insertion host for lithium battery",
J. Ming, P. Barpanda, S. Nishimura, M. Okubo, A. Yamada,
Electrochemistry Communications, 51, 19-22, 2015.
DOI: https://doi.org/10.1016/j.elecom.2014.11.009
Keywords: lithium batteries, sodium batteries, cathode, alluaudite, oxidation
J049. "t-Na2VOP2O7: A 3.8 V pyrophosphate insertion material for sodium-ion batteries",
P. Barpanda, G. Liu, M. Avdeev, A. Yamada,
ChemElectroChem, 1(9), 1488-1491, 2014.
DOI: https://doi.org/10.1002/celc.201402095
Keywords: cations, electrochemistry, energy conversion, sodium, vanadium
[Highlighted in Inside Cover Page Image]
J048. "A 3.8 V earth-abundant sodium battery electrode",
P. Barpanda, G. Oyama, S. Nishimura, S.C. Chung, A. Yamada,
Nature Communications, 5:4358, 1-8, 2014.
DOI: https://doi.org/10.1038/ncomms5358
Keywords: sodium battery, cathode, alluaudite, high voltage operation
[Winner of The Ross Coffin Purdy Award-2016 by the American Ceramic Society]
J047. "Sodium-ion battery cathodes Na2FeP2O7 and Na2MnP2O7: Diffusion behavior for high rate performances",
J.M. Clark, P. Barpanda, A. Yamada, M.S. Islam,
Journal of Materials Chemistry A, 2(30), 11807-11812, 2014.
DOI: https://doi.org/10.1039/C4TA02383H
Keywords: sodium-ion battery, pyrophosphates, cathode, diffusion, rate kinetics
J046. "Structural, magnetic and electrochemical investigation of novel binary Na2-x(Fe1-yMny)P2O7 (0 < y < 1) pyrophosphate
compounds for rechargeable sodium-ion batteries",
P. Barpanda, G. Liu, Z. Mohamed, C.D. Ling, A. Yamada,
Solid State Ionics, 268, 305-311, 2014.
DOI: https://doi.org/10.1016/j.ssi.2014.03.011
Keywords: sodium-ion battery, pyrophosphate, Na2FeP2O7, Na2MnP2O7, solid-solution
[Special Issue: ICMAT-2013 Symposium A: Advanced Energy Storage Systems: Lithium Ion Batteries and Beyond]
J045. "Krohnkite-type Na2Fe(SO4)2.2H2O as a novel 3.25 V insertion compound for Na-ion batteries",
P. Barpanda, G. Oyama, C.D. Ling, A. Yamada,
Chemistry of Materials, 26(3), 1297-1299, 2014.
DOI: https://doi.org/10.1021/cm4033226
Keywords: sodium-ion battery, krohnkite, Na2FeSO4.2H2O, sulfate, synchrotron
J044. "Magnetic structure and properties of the rechargeable battery insertion compound Na2FePO4F",
M. Avdeev, C.D. Ling, T.T. Tan, S. Li, G. Oyama, A. Yamada, P. Barpanda,
Inorganic Chemistry, 53(2), 682-684, 2014.
DOI: https://doi.org/10.1021/ic402513d
Keywords: magnetic structure, fluorophosphate, Na2FePO4F, neutron powder diffraction, antiferromagnetic ordering
J043. "Sodium manganese fluorosulfate with a triplite structure",
P. Barpanda, C.D. Ling, G. Oyama, A. Yamada,
Acta Crystallographica, B69, 584-588, 2013.
DOI: https://doi.org/10.1107/S2052519213024093
Keywords: sodium-ion battery cathodes, fluorosulfates, triplite, disorder
J042. "General observation of Fe3+/Fe2+ redox couple close to 4 V in partially substituted Li2FeP2O7 pyrophosphate
solid-solution cathodes",
T. Ye, P. Barpanda, S. Nishimura, N. Furuta, S.C. Chung, A. Yamada,
Chemistry of Materials, 25(18), 3623-3629, 2013.
DOI: https://doi.org/10.1021/cm401547z
Keywords: lithium-ion battery, pyrophosphate, redox potential tunability, structural stabilization
J041. "Na2FeP2O7: A safe cathode for rechargeable sodium-ion batteries",
P. Barpanda, G. Liu, C.D. Ling, M. Tamaru, M. Avdeev, S.C. Chung, Y. Yamada, A. Yamada,
Chemistry of Materials, 25(17), 3480-3487, 2013.
DOI: https://doi.org/10.1021/cm401657c
Keywords: sodium-ion battery, cathode, Na2FeP2O7, NaFeP2O7, polymorphism, safety
J040. "Magnetic structures of NaFePO4 maricite and triphylite polymorphs for sodium-ion batteries",
M. Avdeev, Z. Mohamed, C.D. Ling, J. Lu, M. Tamaru, A. Yamada, P. Barpanda,
Inorganic Chemistry, 52(15), 8685-8693, 2013.
DOI: https://doi.org/10.1021/ic400870x
Keywords: magnetic structure, NaFePO4, polymorphism, triphylite, maricite
J039. "Demonstration of Co3+/Co2+ electrochemical activity in LiCoBO3 cathode at 4.0 V",
Y. Yamashita, P. Barpanda, Y. Yamada, A. Yamada,
ECS Electrochemistry Letters, 2(8), A75-A77, 2013.
DOI: https://doi.org/10.1149/2.003308eel
Keywords: Li-ion batteries, cathode, borate, LiCoBO3, high voltage
J038. "Neutron diffraction study of the Li-ion battery cathode Li2FeP2O7",
P. Barpanda, G. Rousse, T. Ye, C.D. Ling, Z. Mohamed, Y. Klein, A. Yamada,
Inorganic Chemistry, 52(6), 3334-3341, 2013.
DOI: https://doi.org/10.1021/ic302816w
Keywords: Li-ion batteries, Li2FeP2O7, magnetic structure, neutron diffraction, magnetic ordering
J037. "High-throughput solution combustion synthesis of high-capacity LiFeBO3 cathode",
P. Barpanda, Y. Yamashita, Y. Yamada, A. Yamada,
Journal of the Electrochemical Society, 160(5), A3095-A3099, 2013.
DOI: https://doi.org/10.1149/2.015305jes
Keywords: Li-ion batteries, cathode, borate, LiFeBO3, high capacity
[Focus Issue on 'Intercalation Compounds for Rechargeable Batteries']
J036. "A new polymorph of Na2MnP2O7 as a 3.6 V cathode material for sodium-ion batteries",
P. Barpanda, T. Ye, M. Avdeev, S.C. Chung, A. Yamada,
Journal of Materials Chemistry A, 1(13), 4194-4197, 2013.
DOI: https://doi.org/10.1039/C3TA10210F
Keywords: sodium batteries, pyrophosphate, Na2MnP2O7, cathode, polymorphism
J035. "A layer-structured Na2CoP2O7 pyrophosphate cathode for sodium-ion batteries",
P. Barpanda, J. Lu, T. Ye, M. Kajiyama, S.C. Chung, N. Yabuuchi, S. Komaba, A. Yamada,
RSC Advances, 3(12), 3857-3860, 2013.
DOI: https://doi.org/10.1039/C3RA23026K
Keywords: sodium batteries, pyrophosphate, Na2CoP2O7, cathode, layered material
J034. "Magnetic structure and properties of the Na2CoP2O7 pyrophosphate cathode for sodium-ion batteries:
A supersuperexchange-driven non-collinear antiferromagnet",
P. Barpanda, M. Avdeev, C.D. Ling, J. Lu, A. Yamada,
Inorganic Chemistry, 52(1), 395-401, 2013.
DOI: https://doi.org/10.1021/ic302191d
Keywords: pyrophosphate, Na2CoP2O7, magnetometry, neutron diffraction, antiferromagnet
J033. "Sodium iron pyrophosphate: A novel 3.0 V iron-based cathode for sodium-ion batteries",
P. Barpanda, T. Ye, S. Nishimura, S.C. Chung, Y. Yamada, M. Okubo, H. Zhou, A. Yamada,
Electrochemistry Communications, 24, 116-119, 2012.
DOI: https://doi.org/10.1016/j.elecom.2012.08.028
Keywords: Na-ion batteries, cathode, pyrophosphate, Na2FeP2O7
J032. "Observation of the highest Mn3+/Mn2+ redox potential of 4.45 V in a Li2MnP2O7 pyrophosphate cathode",
M. Tamaru, P. Barpanda, Y. Yamada, S. Nishimura, A. Yamada,
Journal of Materials Chemistry, 22(47), 24526-24529, 2012.
DOI: https://doi.org/10.1039/C2JM35260E
Keywords: Li-ion batteries, cathode, pyrophosphate, Li2MnP2O7, high voltage
J031. "High-voltage pyrophosphate cathodes",
P. Barpanda, S. Nishimura, A. Yamada,
Advanced Energy Materials, 2(7), 841-859, 2012.
DOI: https://doi.org/10.1002/aenm.201100772
Keywords: batteries, cathodes, pyrophosphates, polymorphism, high voltage
[Special Issue: Next Generation Battery Materials] [Invited Review]
J030. "Electrochemical redox mechanism in 3.5 V Li2-xFeP2O7 (0 < x < 1) pyrophosphate cathode",
D. Shimizu, S. Nishimura, P. Barpanda, A. Yamada,
Chemistry of Materials, 24(13), 2598-2603, 2012.
DOI: https://doi.org/10.1021/cm301337z
Keywords: Li-ion battery, pyrophosphates, X-ray diffraction, redox mechanism
J029. "Eco-efficient splash combustion synthesis of nanoscale pyrophosphate (Li2FeP2O7) positive-electrode using Fe(III) precursors",
P. Barpanda, T. Ye, S.C. Chung, Y. Yamada, S. Nishimura, A. Yamada,
Journal of Materials Chemistry, 22(27), 13455-13459, 2012.
DOI: https://doi.org/10.1039/C2JM32566G
Keywords: Li-ion battery, cathode, pyrophosphate, combustion synthesis, Li2FeP2O7
J028. "Polymorphs of LiFeSO4F as cathode materials for lithium ion battery- A first principle computational study",
S.C. Chung, P. Barpanda, S. Nishimura, Y. Yamada, A. Yamada,
Physical Chemistry Chemical Physics, 14(24), 8678-8682, 2012.
DOI: https://doi.org/10.1039/C2CP40489C
Keywords: lithium battery, cathode, fluorosulfate, LiFeSO4F, DFT study
J027. "Fe3+/Fe2+ redox couple approaching 4 V in Li2-x(Fe1-yMny)P2O7 pyrophosphate cathodes",
N. Furuta, S. Nishimura, P. Barpanda, A. Yamada,
Chemistry of Materials, 24(6), 1055-1061, 2012.
DOI: https://doi.org/10.1021/cm2032465
Keywords: lithium ion battery, cathode material, pyrophosphate, polyanionic compounds
J026. "Enabling the Li-ion conductivity of Li-metal fluorosulphates by ionic liquid grafting",
P. Barpanda, R. Dedryvere, M. Deschamps, C. Delacourt, M. Reynaud, A. Yamada, J.M. Tarascon,
Journal of Solid State Electrochemistry, 16(5), 1743-1751, 2012.
DOI: https://doi.org/10.1007/s10008-011-1598-y
Keywords: conductivity, fluorosulphates, ionic liquid grafting, solid electrolyte
[Special Issue: ICMAT-2011 Symposium N: Advanced Energy Storage Systems- from fundamentals to applications]
J025. "Synthesis and crystal chemistry of the NaMSO4F family (M = Mg, Fe, Co, Cu, Zn)",
M. Reynaud, P. Barpanda, G. Rousse, J.N. Chotard, B.C. Melot, N. Recham, J.M. Tarascon,
Solid State Sciences, 14(1), 15-20, 2012.
DOI: https://doi.org/10.1016/j.solidstatesciences.2011.09.004
Keywords: fluorosulphate, cathode, tavorite-like framework, ionic conductivity, battery
J024. "A 3.90 V iron-based fluorosulphate material for lithium-ion batteries crystallizing in the triplite structure",
P. Barpanda, M. Ati, B.C. Melot, G. Rousse, J.N. Chotard, M.L. Doublet, M.T. Sougrati, S.A. Corr, J.C. Jumas, J.M. Tarascon,
Nature Materials, 10(10), 772-779, 2011.
DOI: https://doi.org/10.1038/nmat3093
Keywords: lithium batteries, cathode, fluorosulphates, triplite, high voltage
J023. "Structural and electrochemical diversity in LiFe1-dZndSO4F solid solution: A Fe-based 3.9 V positive-electrode material",
M. Ati, B.C. Melot, G. Rousse, J.N. Chotard, P. Barpanda, J.M. Tarascon,
Angewandte Chemie International Edition, 50(45), 10574-10577, 2011.
DOI: https://doi.org/10.1002/anie.201104648
Keywords: batteries, electrochemistry, fluorosulfates, lithium, solid-state structures
[Highlighted as 'Hot Paper']
J022. "Structure, surface morphology and electrochemical properties of brominated activated carbons",
P. Barpanda, G. Fanchini, G.G. Amatucci,
Carbon, 49(7), 2538-2548, 2011.
DOI: https://doi.org/10.1016/j.carbon.2011.02.028
Keywords: supercapacitors, activated carbon, bromination, mechanical milling, pseudocapacitance
J021. "Direct and modified ionothermal synthesis of LiMnPO4 with tunable morphology for rechargeable Li-ion batteries",
P. Barpanda, K. Djellab, N. Recham, M. Armand, J.M. Tarascon,
Journal of Materials Chemistry, 21(27), 10143-10152, 2011.
DOI: https://doi.org/10.1039/C0JM04423G
Keywords: Li-ion batteries, LiMnPO4, ionothermal synthesis, morphology, capacity
[Themed Issue on 'Advanced Materials for Lithium Batteries']
[Highlighted as 'Hot Paper'] [Highlighted with 'Inside Cover Page Image']
J020. "LiZnSO4F made in an ionic liquid: A ceramic electrolyte composite for solid-state lithium batteries",
P. Barpanda, J.N. Chotard, C. Delacourt, M. Reynaud, Y. Filinchuk, M. Armand, M. Deschamps, J.M. Tarascon,
Angewandte Chemie International Edition, 50(11), 2526-2531, 2011.
DOI: https://doi.org/10.1002/anie.201006331
Keywords: ceramics, electrolytes, fluorosulfates, ionic liquids, lithium batteries
[Highlighted as 'Hot Paper']
J019. "Magnetisation reversal in cylindrical nickel nanobars involving magnetic vortex structure: A micromagnetic study",
P. Barpanda,
Physica B: Condensed Matter, 406(6-7), 1336-1340, 2011.
DOI: https://doi.org/10.1016/j.physb.2011.01.029
Keywords: cylindrical nanobars, micromagnetics, inversion symmetry, coercivity, nickel
J018. "Structural and electrochemical modification of graphitic carbons by vapor-phase iodine-incorporation",
P. Barpanda, K. Djellab, R.K. Sadangi, A.K. Sahu, D. Roy, K. Sun,
Carbon, 48(14), 4178-4189, 2010.
DOI: https://doi.org/10.1016/j.carbon.2010.07.038
Keywords: supercapacitors, graphite, iodine, ordering, capacitance
J017. "Structural, transport, and electrochemical investigation of novel AMSO4F (A= Na, Li; M = Fe, Co, Ni, Mn)
metal fluorosulphates prepared using low temperature synthesis routes",
P. Barpanda, J.N. Chotard, N. Recham, C. Delacourt, M. Ati, L. Dupont, M. Armand, J.M. Tarascon,
Inorganic Chemistry, 49(16), 7401-7413, 2010.
DOI: https://doi.org/10.1021/ic100583f
Keywords: batteries, cathodes, fluorosulphates, low temperature synthesis, conductivity
J016. "Fluorosulfate positive electrodes for Li-ion batteries made via a solid-state dry process",
M. Ati, M.T. Sougrati, N. Recham, P. Barpanda, J.B. Leriche, M. Courty, M. Armand, J.C. Jumas, J.M. Tarascon,
Journal of the Electrochemical Society, 157(9), A1007-A1015, 2010.
DOI: https://doi.org/10.1149/1.3457435
Keywords: ball milling, electrochemical electrodes, iron compounds, Mossbauer effect, secondary cells
J015. "Synthesis, structural, and transport properties of novel bihydrated fluorosulfates NaMSO4F.2H2O (M = Fe, Co and Ni)",
M. Ati, L. Dupont, N. Recham, J.N. Chotard, W. Walker, C. Davoisne, P. Barpanda, V. Sarou-Kanian, M. Armand, J.M. Tarascon,
Chemistry of Materials, 22(13), 4062-4068, 2010.
DOI: https://doi.org/10.1149/1.3457435
Keywords: sodium insertion materials, bihydrated fluorosulfates, NaMSO4F.2H2O, uklonskovite, conductivity
J014. "Structure and electrochemical properties of novel mixed Li(Fe1-xMx)SO4F (M = Co, Ni, Mn) phases fabricated by
low temperature ionothermal synthesis",
P. Barpanda, N. Recham, J.N. Chotard, K. Djellab, W. Walker, M. Armand, J.M. Tarascon,
Journal of Materials Chemistry, 20(9), 1659-1668, 2010.
DOI: https://doi.org/10.1039/B922063A
Keywords: Li-ion batteries, fluorosulphates, tavorite, ionic liquids, solid solution
[Highlighted as 'Cover Page Image']
J013. "Hunting for better Li-based electrode materials via low temperature inorganic synthesis",
J.M. Tarascon, N. Recham, M. Armand, J.N. Chotard, P. Barpanda, W. Walker, L. Dupont,
Chemistry of Materials, 22(3), 724-739, 2010.
DOI: https://doi.org/10.1021/cm9030478
Keywords: batteries, lithium insertion materials, low temperature synthesis, high voltage, capacity
[Special Issue: 'Materials Chemistry for Energy Conversion'] ['Cover Page Image']
J012. "Fabrication, physical and electrochemical investigation of microporous carbon polyiodide nanocomposites",
P. Barpanda, Y. Li, F. Cosandey, S. Rangan, R.A. Bartynski, G.G. Amatucci,
Journal of the Electrochemical Society, 156(11), A873-A885, 2009.
DOI: https://doi.org/10.1149/1.3212851
Keywords: crystal morphology, nanocomposites, porous materials, X-ray diffraction, Raman spectroscopy
[Highlighted in Virtual Journal of Nanoscale Science and Technology, 20(13), 28 Sep 2009]
J011. "The role of magnetic vortex formation in chains of spherical FeNi nanoparticles: A micromagnetic study",
P. Barpanda, M.R. Scheinfein, T. Kasama, R.E. Dunin-Borkowski,
Japanese Journal of Applied Physics, 48(10), 103002(1-6), 2009.
DOI: https://doi.org/10.1143/JJAP.48.103002
Keywords: chain-of-sphere model, permalloy, magnetic domains, vortex, micromagnetic simulation
J010. "Micromagnetics of magnetisation reversal mechanism in Permalloy chain-of-sphere structure with magnetic vortices",
P. Barpanda,
Computational Materials Science, 45(2), 240-246, 2009.
DOI: https://doi.org/10.1016/j.commatsci.2008.09.014
Keywords: micromagnetics, magnetic vortex, reversal mechanism, coercivity, Permalloy
J009. "Sliding wear behaviour of an epoxy system reinforced with particulate fly ash filler",
P. Barpanda, S.M. Kulkarni, Kishore,
Advanced Composites Letters, 18(6), 211-217, 2009.
DOI: https://doi.org/10.1177/096369350901800603
Keywords: sliding wear, pin-on-disk test, polymer-matrix composites, epoxy, fly ash
J008. "Fabrication, structure and electrochemistry of iodated microporous carbons of low mesoporosity",
P. Barpanda,
The Electrochemical Society Interface, 16(4), 57-58, 2007.
DOI: https://doi.org/10.xxx/xxxx
Keywords: activated carbon, halidation, microporous materials, capacity, supercapacitors
[Report on 2017 Colin G. Garfield ECS Summer Fellowship]
J007. "The physical and electrochemical characterization of vapor phase iodated activated carbons",
P. Barpanda, G. Fanchini, G.G. Amatucci,
Electrochimica Acta, 52(24), 7136-7147, 2007.
DOI: https://doi.org/10.1016/j.electacta.2007.05.051
Keywords: activated carbon, iodine, EDLC, non-Faradaic, non-aqueous
J006. "Physical and electrochemical properties of iodine-modified activated carbons",
P. Barpanda, G. Fanchini, G.G. Amatucci,
Journal of the Electrochemical Society, 154(5), A467-A476, 2007.
DOI: https://doi.org/10.1149/1.2714313
Keywords: carbon, nanostructured materials, electrochemical electrodes, materials preparation
J005. "Evolution and propagation of magnetic vortices in chains of Permalloy nanospheres",
P. Barpanda, T. Kasama, M.R. Scheinfein, R.E. Dunin-Borkowski, A.S. Arrott,
Journal of Applied Physics, 99(8), 08G103(1-3), 2006.
DOI: https://doi.org/10.1063/1.2171957
Keywords: chain-of-spheres, Permalloy, magnetic vortices, domain switching, micromagnetic simulation
J004. "Chemically induced order disorder transition in magnesium aluminium spinel",
P. Barpanda, S.K. Behera, P.K. Gupta, S.K. Pratihar, S. Bhattacharya,
Journal of the European Ceramic Society, 26(13), 2603-2609, 2006.
DOI: https://doi.org/10.1016/j.jeurceramsoc.2005.04.032
Keywords: X-ray methods, spectroscopy, chemical preparation, spinels, MgAl2O4
J003. "Off-axis electron holography of pseudo-spin-valve thin-film magnetic elements",
T. Kasama, P. Barpanda, R.E. Dunin-Borkowski, S. Newcomb, F. Castano, C.A. Ross,
Journal of Applied Physics, 98(1), 013903(1-7), 2005.
DOI: https://doi.org/10.1063/1.1943511
Keywords: pseudo-spin-valves, magnetic switching, electron holography, micromagnetic simulation, hysteresis
J002. "Compression strength of saline water-exposed epoxy system containing fly ash particles",
Kishore, P. Barpanda, S.M. Kulkarni,
Journal of Reinforced Plastics and Composites, 24(15), 1567-1576, 2005.
DOI: https://doi.org/10.1177/0731684405050390
Keywords: epoxy, fly ash, saline water exposure, compression strength, fractography
J001. "Synthesis of magnesium-aluminium spinel from autoignition of citrate-nitrate gel",
S.K. Behera, P. Barpanda, S.K. Pratihar, S. Bhattacharya,
Materials Letters, 58(9), 1451-1455, 2004.
DOI: https://doi.org/10.1016/j.matlet.2003.10.004
Keywords: autoignition, citrate-nitrate gel, black ash, order-disorder, Mag-Al spinel
S. Chintha, S. Atif, A. Chaupatnaik, A. Golubnichiy, A.M. Abakumov, P. Barpanda,
Sustainable Energy & Fuels, xx, xxxxx, 2024.
DOI: https://doi.org/10.1039/D4SE00953E
Keywords: Li-ion batteries, anodes, perovskites, Bi-based oxides, conversion-alloying
[Invited Article]
J148. "Perovskite oxides with Pb at B-site as Li-ion battery anodes",
S. Atif, A. Chaupatnaik, A. Rao, A. Padhy, S. Chintha, P. Nukala, M. Fichtner, P. Barpanda,
Electrochimica Acta, 502, 144838, 2024.
DOI: https://doi.org/10.1016/j.electacta.2024.144838
Keywords: Li-ion batteries, anodes, perovskites, conversion, alloying, electron microscopy
J147. "An alternative polymorph of the hydroxysulfate LixFeSO4OH yields improved lithium-ion cathodes",
S. Singh, A. Chakraborty, A. Neveu, P.K. Jha, V. Pralong, M. Fichtner, M.S. Islam, P. Barpanda,
Chemistry of Materials, 36(16), 8088-8097, 2024.
DOI: https://doi.org/10.1021/acs.chemmater.4c01652
Keywords: Li-ion battery, polyanion cathode, low-cost cathode, operando techniques, computational modelling
J146. "Chimie douce derived novel P2-type layered oxide for potassium-ion batteries",
P.K. Jha, A. Golubnichiy, D. Sachdeva, A. Banerjee, G.S. Gautam, M. Fichtner, A.M. Abakumov, P. Barpanda,
Advanced Functional Materials, 34(41), 2410665, 2024.
DOI: https://doi.org/10.1002/adfm.202410665
Keywords: potassium-ion batteries, cathodes, chimie douce, P2 layer oxides, energy storage
[Invited Article] [Highlighted in Cover Image]
J145. "A 3.2 V binary layered oxide cathode for potassium-ion batteries",
P.K. Jha, S.K. Parate, K. Sada, K. Yoshii, T. Masese, P. Nukala, G.S. Gautam, V. Pralong, M. Fichtner, P. Barpanda,
Small, 20(37), 2402204, 2024.
DOI: https://doi.org/10.1002/smll.202402204
Keywords: potassium-ion batteries, cathodes, P3-type layered oxides, energy storage
[Highlighted in Cover Image]
J144. "Bifunctional strontium cobalt molybdenum oxide (Sr2CoMoO6) perovskite as an efficient catalyst for electrochemical water
splitting reactions in alkaline media",
S. Atif, A. Padhy, P.K. Jha, D. Sachdeva, P. Barpanda,
ChemCatChem, 16(17), e202400217, 2024.
DOI: https://doi.org/10.1002/cctc.202400217
Keywords: water splitting, oxygen evolution reaction, hydrogen evolution reaction, perovskite, bifunctional electrocatalyst
[Invited Article] [Hot Topics: Water Splitting Society Volumes: Germany] [Highlighted in Cover Image]
J143. "Unveiling the degradation mechanism of sodium ion batteries based on Na4Fe3(PO4)2P2O7 cathode and hard carbon anode
suggests anode particle size reduction for cycling stability",
S. Lochab, S. Bharathraj, K.S. Mayya, P. Barpanda, S.P. Adiga,
Batteries & Supercaps, 7(8), e202400025, 2024.
DOI: https://doi.org/10.1002/batt.202400025
Keywords: sodium ion batteries, mixed phosphate cathode, hard carbon, single particle modeling, cycling stability
[Highlighted in Cover Image]
J142. "High-entropy materials for sodium-ion batteries",
G. Caroline, N. Nair, S.V. Nair, P. Barpanda, B. Senthilkumar,
Next Sustainability, 4, 100044, 2024.
DOI: https://doi.org/10.1016/j.nxsust.2024.100044
Keywords: sodium-ion batteries, capacity, high-entropy, cathodes, layered metal oxides
[Invited Review Article]
J141. "Role of Co content on the electrode properties of P3-type K0.5Mn1-xCoxO2 potassium insertion materials",
P.K. Jha, P. Barpanda,
Inorganic Chemistry, 63(16), 7137-7145, 2024.
DOI: https://doi.org/10.1021/acs.inorgchem.3c03747
Keywords: potassium-ion batteries, cathodes, P3 type oxides, capacity
[Highlighted in Cover Image]
J140. "Single crystal P2-type Na0.67Mn0.67Ni0.33O2 sodium insertion material with improved cycling stability",
V. Pamidi, C. Naranjo, S. Fuchs, H.S. Stein, T. Diemant, Y. Li et al., Y. Hu, S. Trivedi, M.A. Reddy, P. Barpanda, M. Fichtner,
ACS Applied Materials & Interfaces, 16(20), 25953-25965, 2024.
DOI: https://doi.org/10.1021/acsami.3c15348
Keywords: sodium-ion batteries, layered oxides, single crystal cathodes, inorganic aqueous binders, thermal stability
J139. "Phosphate-based polyanionic insertion materials for oxygen electrocatalysis",
R. Gond, J. Zhu, P. Barpanda,
Materials Chemistry Frontiers, 8(5), 1153-1170, 2024.
DOI: https://doi.org/10.1039/D3QM01088K
Keywords: electrocatalysis, oxygen reduction, oxygen evolution, polyanions, phosphates
[Invited Article] [2024 Themed Collection of Review Articles] [Highlighted in Outside Front Cover Image]
J138. "Greener, safer and better performing aqueous binder for positive electrode manufacturing of sodium ion batteries",
R. Xu, V. Pamidi, Y. Tang, S. Fuchs, H. Stein, B. Dasari, Z. Zhao, S. Behara, Y. Hu, S. Trivedi, M. Reddy, P. Barpanda, M. Fichtner,
ChemSusChem, 17(8), e202301154, 2024.
DOI: https://doi.org/10.1002/cssc.202301154
Keywords: inorganic binders, aqueous binders, surface coatings, lithium-ion batteries, sodium-ion batteries
[Special Issue: Post-Lithium Storage - Shaping the future]
J137. "Water-soluble inorganic binders for lithium-ion and sodium-ion batteries",
S. Trivedi, V. Pamidi, S.P. Bautista, F.N.A. Shamsudin, M. Weil, P. Barpanda, D. Bresser, M. Fichtner,
Advanced Energy Materials, 14(9), 2303338, 2024.
DOI: https://doi.org/10.1002/aenm.202303338
Keywords: inorganic binders, aqueous binders, surface coatings, lithium-ion batteries, sodium-ion batteries
[Special Issue: Post-Lithium Storage - Shaping the future] [Highlighted in Inside Back Cover Image]
J136. "Iron-based fluorophosphate Na2FePO4F as a cathode for aqueous zinc-ion batteries",
D. Singh, Y. Hu, S.S. Meena, R. Vengarathody, M. Fichtner, P. Barpanda,
Chemical Communications, 59(97), 14391-14394, 2023.
DOI: https://doi.org/10.1039/D3CC04940J
Keywords: zinc-ion batteries, cathodes, polyanions, fluorophosphate, spectroscopy
[Highlighted in Inside Cover Image]
J135. "Evaluation of P3-type layered oxides as K-ion battery cathodes",
P.K. Jha, S.N. Totade, P. Barpanda, G.S. Gautam,
Inorganic Chemistry, 62(37), 14971-14979, 2023.
DOI: https://doi.org/10.1021/acs.inorgchem.3c01686
Keywords: batteries, cathodes, P3 layered oxides, phase stability, DFT calculations
J134. "Zinc substituted cobalt phosphate [ZnCo2(PO4)2] as a bifunctional electrocatalyst",
D. Singh, S. Singh, P.K. Prasanna, R.K. Rai, P. Chirawatkul, S. Chakraborty, M. Fichtner, P. Barpanda,
Inorganic Chemistry, 62(31), 12345-12355, 2023.
DOI: https://doi.org/10.1021/acs.inorgchem.3c01367
Keywords: cobalt phosphate, bifunctional electrocatalysts, ORR, OER, DFT calculations
[Highlighted in Cover Image]
J133. "Calorimetric study of mixed phosphates Na4M3(PO4)2P2O7 (M = Mn, Fe, Co, Ni) to evaluate the electrochemical trends",
K. Jayanthi, S. Lochab, P. Barpanda, A. Navrotsky,
Journal of Physical Chemistry C, 127(24), 11700-11706, 2023.
DOI: https://doi.org/10.1021/acs.jpcc.3c01975
Keywords: calorimetry, Na-ion batteries, cathodes, phosphates, energetics
J132. "P3 type layered oxide frameworks: An appealing family of insertion materials for K-ion batteries",
P.K. Jha, V. Pralong, M. Fichtner, P. Barpanda,
Current Opinion in Electrochemistry, 38, 101216, 2023.
DOI: https://doi.org/10.1016/j.coelec.2023.101216
Keywords: K-ion batteries, cathodes, layered oxides, P3 frameworks
[Special Issue: Emerging Materials and Designs for Energy Storage] [Invited Article] [Highlighted in Front Cover Image]
J131. "Eldfellite NaV(SO4)2 as a versatile cathode insertion host for Li-ion and Na-ion batteries",
S. Singh, D. Singh, R. Ahuja, M. Fichtner, P. Barpanda,
Journal of Materials Chemistry A, 11(8), 3975-3986, 2023.
DOI: https://doi.org/10.1039/D2TA03673H
Keywords: batteries, cathodes, eldfellite, polyanions, capacity, DFT
[Highlighted in Inside Front Cover Image]
J130. "A new high voltage alluaudite sodium battery insertion material",
P. Barman, P.K. Jha, A. Chaupatnaik, K. Jayanthi, R. Prasada Rao, G.S. Gautam, S. Franger, A. Navrotsky, P. Barpanda,
Materials Today Chemistry, 27, 101316, 2023.
DOI: https://doi.org/10.1016/j.mtchem.2022.101316
Keywords: batteries, cathodes, alluaudite, molybdates, ionic conductivity, high-voltage
[Special Issue: E-MRS Spring Meeting 2022 Symposium G Special Issue]
J129. "Probing capacity trends in MLi2Ti6O14 lithium-ion battery anodes using calorimetric studies",
K. Jayanthi, A. Chaupatnaik, P. Barpanda, A. Navrotsky,
ACS Omega, 7(46), 42482-42488, 2022.
DOI: https://doi.org/10.1021/acsomega.2c05701
Keywords: calorimetry, Li-ion batteries, anodes, titanates, energetics
J128. "First principles investigation of anionic redox in bisulfate lithium battery cathodes",
P.K. Jha, S. Singh, M. Shrivastava, P. Barpanda, G.S. Gautam,
Physical Chemistry Chemical Physics, 24(37), 22756-22767, 2022.
DOI: https://doi.org/10.1039/D2CP00473A
Keywords: Li-ion batteries, cathodes, bisulfates, DFT calculations, anionic redox
J127. "A molybdenum doped layer-spinel composite cathode material for sodium-ion battery",
S.P. Vanam, P. Barpanda,
Electrochimica Acta, 431, 141122, 2022.
DOI: https://doi.org/10.1016/j.electacta.2022.141122
Keywords: sodium-ion battery, P2-layer/spinel composite, P2-P2'' phase transition
[Special Issue: Recent Advances in Sodium Ion Batteries]
J126. "Pyrophosphate Na2CoP2O7 polymorphs as efficient bifunctional oxygen electrocatalysts for zinc-air batteries",
R. Gond, S. Singh, X. Zhao, D. Singh, R. Ahuja, M. Fichtner, P. Barpanda,
ACS Applied Materials & Interfaces, 14(36), 40761-40770, 2022.
DOI: https://doi.org/10.1021/acsami.2c06944
Keywords: cobalt pyrophosphates, bifunctional electrocatalysts, ORR, OER, DFT calculations, zinc-air battery
J125. "Facile synthesis and phase stability of Cu-based Na2Cu(SO4)2.xH2O (x = 0-2) sulfate minerals as
conversion type battery electrodes",
S. Singh, A. Neveu, K. Jayanthi, T. Das, S. Chakraborty, A. Navrotsky, V. Pralong, P. Barpanda,
Dalton Transactions, 51(29), 11169-11179, 2022.
DOI: https://doi.org/10.1039/D2DT01830`F
Keywords: sulfate cathode, saranchinite, krohnkite, conversion reaction, cathode, battery
J124. "Bio-waste derived highly porous N-doped carbon as low-cost bifunctional electrocatalyst for hybrid sodium-air batteries",
C. Murugesan, B. Senthilkumar, P. Barpanda,
ACS Sustainable Chemistry & Engineering, 10(28), 9077-9086, 2022.
DOI: https://doi.org/10.1021/acssuschemeng.2c01300
Keywords: bio-waste, highly porous carbon, N/S doping, bifunctional electrocatalyst, hybrid Na-air battery
[Highlighted in Cover Image]
J123. "Aqueous spray-drying synthesis of alluaudite Na2+2xFe2-x(SO4)3 sodium insertion material:
Studies of electrochemical activity, thermodynamic stability and humidity induced phase transformation",
P. Barman, D. Dwibedi, K. Jayanthi, S.S. Meena, S. Nagendran, A. Navrotsky, P. Barpanda,
Journal of Solid State Electrochemistry, 26(9), 1941-1950, 2022.
DOI: https://doi.org/10.1007/s10008-022-05142-w
Keywords: sodium-ion battery, cathode, alluaudite, capacity, phase transition
[Special issue in celebration of the 70th birthday of Prof. Doron Aurbach]
J122. "Manganese-based tunnel type cathode materials for secondary Li-ion and K-ion batteries",
S.P. Vanam, B. Senthilkumar, P. Amonpattaratkit, P. Barpanda,
Inorganic Chemistry, 61(9), 3959-3969, 2022.
DOI: https://doi.org/10.1021/acs.inorgchem.1c03609
Keywords: Li-ion battery, K-ion battery, tunnel-type Na0.44MnO2, structure, capacity
J121. "Potassium cobalt pyrophosphate as a non-precious bifunctional electrocatalyst for zinc-air batteries",
K. Sada, R. Gond, N. Bothra, S.K. Pati, P. Barpanda,
ACS Applied Materials & Interfaces, 14(7), 8992-9001, 2022.
DOI: https://doi.org/10.1021/acsami.1c21481
Keywords: cobalt pyrophosphate, bifunctional electrocatalyst, ORR, OER, zinc-air batteries
J120. "Magnetic structure of fluorophosphate Na2MnPO4F sodium battery material",
S. Lochab, S. Rayaprol, M. Avdeev, L. Sharma, P. Barpanda,
Journal of Solid State Chemistry, 308, 122926, 2022.
DOI: https://doi.org/10.1016/j.jssc.2022.122926
Keywords: magnetic structure, neutron powder diffraction, sodium battery, fluorophosphate, Na2MnPO4F
J119. "Structural change induced by electrochemical sodium extraction from layered O'3-NaMnO2",
K. Kubota, M. Miyazai, E.J. Kim, H. Yoshida, P. Barpanda, S. Komaba,
Journal of Materials Chemistry A, 9(47), 26810-26819, 2021.
DOI: https://doi.org/10.1039/D1TA05390F
Keywords: sodium-ion batteries, layered O'3-NaMnO2, in-situ X-ray diffraction, cycling stability
J118. "Crystal and magnetic structures of monoclinic FeOHSO4",
M. Avdeev, S. Singh, P. Barpanda, C.D. Ling,
Inorganic Chemistry, 60(20), 15128-15130, 2021.
DOI: https://doi.org/10.1021/acs.inorgchem.1c02544
Keywords: crystal structure, magnetic properties, magnetic structure, neutron diffraction, hydroxysulfate
J117. "Cobalt tetraphosphate as an efficient bifunctional electrocatalyst for hybrid sodium-air batteries",
C. Murugesan, S.P. Panjalingam, S. Lochab, R.K. Rai, X.F. Zhao, D. Singh, R. Ahuja, P. Barpanda,
Nano Energy, 89(B), 106485, 2021.
DOI: https://doi.org/10.1016/j.nanoen.2021.106485
Keywords: cobalt tetraphosphate, bifunctional electrocatalyst, NASICON, OER, ORR, hybrid Na-air batteries
J116. "An overview of hydroxy-based polyanionic cathode insertion materials for metal-ion batteries",
S. Singh, S. Lochab, L. Sharma, V. Pralong, P. Barpanda,
Physical Chemistry Chemical Physics, 23(34), 18283-18299, 2021.
DOI: https://doi.org/10.1039/D1CP01741A
Keywords: batteries, cathodes, polyanions, hydroxy-based insertion materials, capacity
[Invited Perspective Article] [Themed Collection of Perspectives]
J115. "Marinite Li2Ni(SO4)2 as a new member of bisulfate family of high-voltage lithium battery cathodes",
S. Singh, P.K. Jha, M. Avdeev, W. Zhang, K. Jayanthi, A. Navrotsky, H. N. Alshareef, P. Barpanda,
Chemistry of Materials, 33(15), 6108-6119, 2021.
DOI: https://doi.org/10.1021/acs.chemmater.1c01669
Keywords: Li-ion battery, cathode, bisulfates, crystallography, DFT, calorimetry
J114. "Cobalt metaphosphates as economic bifunctional electrocatalysts for hybrid sodium-air batteries",
C. Murugesan, M. Musthafa, S. Lochab, P. Barpanda,
Inorganic Chemistry, 60(16), 11974-11983, 2021.
DOI: https://doi.org/10.1021/acs.inorgchem.1c01009
Keywords: hybrid Na-air battery, electrocatalysts, bifunctionality, metaphosphates
J113. "Perovskite lead-based oxide anodes for rechargeable batteries",
A. Chaupatnaik, P. Barpanda,
Electrochemistry Communications, 127, 107038, 2021.
DOI: https://doi.org/10.1016/j.elecom.2021.107038
Keywords: battery, anode materials, perovskite, PbTiO3
[Invited Article]
J112. "Performance evaluation of LiFePO4OH cathode for stationary storage applications using a reduced order
electrochemical model",
L. Sharma, S. Bharathraj, P. Barpanda, S.P. Adiga, K.S. Mayya,
ACS Applied Energy Materials, 4(1), 1021-1032, 2021.
DOI: https://doi.org/10.1021/acsaem.0c03049
Keywords: Li-ion battery, hydroxyphosphate, electrochemical modeling, Co-free cathodes, cycling efficiency, Ragone plots
J111. "Electrochemical insertion of potassium ions in Na4Fe3(PO4)2P2O7 mixed phosphate",
B. Senthilkumar, C. Murugesan, K. Sada, P. Barpanda,
Journal of Power Sources, 480, 228794, 2020.
DOI: https://doi.org/10.1016/j.jpowsour.2020.228794
Keywords: potassium-ion batteries, Na4Fe3(PO4)2P2O7, 3D pathway, cathode, mixed polyanion, capacity
J110. "Metal fluorophosphate polyanionic insertion hosts as efficient bifunctional electrocatalysts for oxygen evolution
and reduction reactions",
L. Sharma, N. Bothra, R.K. Rai, S. Pati, P. Barpanda,
Journal of Materials Chemistry A, 8(36), 18651-18658, 2020.
DOI: https://doi.org/10.1039/D0TA05880G
Keywords: electrocatalysis, bifunctionality, metal-air batteries, polyanion, fluorophosphates
[Highlighted in Inside Front Cover Image]
J109. "Fluorophosphates: Next generation cathode materials for rechargeable batteries",
L. Sharma, S.P. Adiga, H.N. Alshareef, P. Barpanda,
Advanced Energy Materials, 10(43), 2001449, 2020.
DOI: https://doi.org/10.1002/aenm.202001449
Keywords: batteries, cathodes, polyanions, fluorophosphates, capacity, electrocatalysis
[Hot Topic: Batteries and Supercapacitors]
J108. "Operando sodiation mechanistic study of a new antimony based intermetallic CoSb as high performance
sodium ion battery anode",
S. Sarkar, A. Chaupatnaik, S.D. Ramarao, U. Subbarao, P. Barpanda, S.C. Peter,
Journal of Physical Chemistry C, 124(29), 15757-15768, 2020.
DOI: https://doi.org/10.1021/acs.jpcc.0c03556
Keywords: sodium-ion battery, intermetallics, antimonide, ex-situ mechanism
[Special Issue "Hellmut Eckert Festschrift"]
J107. "Design of zinc-substituted cobalt (pyro)phosphates as efficient bifunctional electrocatalysts for zinc-air batteries",
A. Baby, D. Singh, C. Murugesan, P. Barpanda,
Chemical Communications, 56, 8400-8403, 2020.
DOI: https://doi.org/10.1039/D0CC01631D
Keywords: cobalt (pyro)phosphates, bifunctional, electrocatalyst, zinc-air battery
J106. "Alluaudite battery cathodes",
D. Dwibedi, P. Barpanda, A. Yamada,
Small Methods, 4(7), 2000051, 2020.
DOI: https://doi.org/10.1002/smtd.202000051
Keywords: alluaudite-based batteries, alluaudites, cathodes, secondary batteries
[Invited Review]
J105. "P3-type layered K0.48Mn0.4Co0.6O2: a novel cathode material for potassium-ion batteries",
K. Sada, P. Barpanda,
Chemical Communications, 56(15), 2272-2275, 2020.
DOI: https://doi.org/10.1039/C9CC06657H
Keywords: potassium-ion battery, oxide cathodes, capacity, solid-solution redox mechanism
J104. "Iron-based mixed phosphate Na4Fe3(PO4)2P2O7 thin films for sodium-ion micro-batteries",
B. Senthilkumar, A. Rambabu, C. Murugesan, S.B. Krupanidhi, P. Barpanda,
ACS Omega, 5(13), 7219-7224, 2020.
DOI: https://doi.org/10.1021/acsomega.9b03835
Keywords: mixed polyanion, sodium-ion battery, thin film, capacity, pulsed laser deposition
J103. "Potassium-ion intercalation in anti-NASICON-type iron molybdate Fe2(MoO4)3",
B. Senthilkumar, R.K. Selvan, P. Barpanda,
Electrochemistry Communications, 110, 106617, 2020.
DOI: https://doi.org/10.1016/j.elecom.2019.106617
Keywords: potassium-ion batteries, polyanion, NASICON, iron molybdate, capacity
J102. "Fluorophosphates as efficient bifunctional electrocatalysts for metal-air batteries",
L. Sharma, R. Gond, B. Senthilkumar, A. Roy, P. Barpanda,
ACS Catalysis, 10(1), 43-50, 2020.
DOI: https://doi.org/10.1021/acscatal.9b03686
Keywords: fluorophosphates, bifunctional, electrocatalyst, air-battery, efficiency
J10`1. "Revisiting the layered Na3Fe3(PO4)4 phosphate sodium insertion compound: Structure, magnetic and electrochemical study",
G.S. Shinde, R. Gond, M. Avdeev, C.D. Ling, R. Prasada Rao, S. Adams, P. Barpanda,
Materials Research Express, 7, 014001, 2020.
DOI: https://doi.org/10.1088/2053-1591/ab54f4
Keywords: Na-ion batteries, cathode, Na3Fe3(PO4)4, layered structure, BVSE calculation
[Focus Issue on Materials Research in India] [Invited Article]
J100. "Polymorphism and temperature-induced phase transitions of Na2CoP2O7",
M. Avdeev, C.W. Wang, P. Barpanda, K. Fujii, M. Yashima,
Inorganic Chemistry, 58(24), 16823-16830, 2019.
DOI: https://doi.org/10.1021/acs.inorgchem.9b03014
Keywords: pyrophosphates, neutron diffraction, polymorphism, phase transitions
J099. "Cryptomelane K1.33Mn8O16 as a cathode for rechargeable aqueous zinc-ion batteries",
K. Sada, B. Senthilkumar, P. Barpanda,
Journal of Materials Chemistry A, 7, 23981-23988, 2019.
DOI: https://doi.org/10.1039/C9TA05836B
Keywords: aqueous zinc-ion batteries, cathode, cryptomelane, sonochemical synthesis, capacity
[2019 Emerging Investigators Themed Issue of Journal of Materials Chemistry A]
J098. "Alluaudite NaCoFe2(PO4)3 as a 2.9 V cathode for sodium-ion batteries exhibiting bifunctional electrocatalytic activity",
D. Dwibedi, R. Gond, P. Barpanda,
Chemistry of Materials, 31(18), 7501-7509, 2019.
DOI: https://doi.org/10.1021/acs.chemmater.9b02220
Keywords: sodium-ion batteries, alluaudite, bond valence sum analysis, diffusion, electrochemistry, electrocatalysis
J097. "Na2MnP2O7 polymorphs as efficient bifunctional catalysts for oxygen reduction and oxygen evolution reactions",
R. Gond, S.P. Vanam, P. Barpanda,
Chemical Communications, 55, 11595-11598, 2019.
DOI: https://doi.org/10.1039/C9CC04680A
Keywords: polymorphism, Na2MnP2O7, bifunctional electrocatalysts, oxygen reduction, oxygen evolution
J096. "Cobalt and nickel phosphates as multifunctional air-cathodes for rechargeable hybrid sodium-air battery applications",
B. Senthilkumar, I. Ahmad, P. Barpanda,
ACS Applied Materials & Interfaces, 11(37), 33811-33818, 2019.
DOI: https://doi.org/10.1021/acsami.9b09090
Keywords: nickel cobalt phosphate, hybrid sodium-air battery, bifunctional electrocatalyst, aqueous electrolyte, NASICON
J095. "Structural and electrochemical investigation of binary Na2Fe1-xZnxP2O7 (O < x < 1) pyrophosphate cathodes for
sodium-ion batteries",
R. Gond, S.S. Meena, V. Pralong, P. Barpanda,
Journal of Solid State Chemistry, 277, 329-336, 2019.
DOI: https://doi.org/10.1016/j.jssc.2019.06.027
Keywords: sodium-ion battery, pyrophosphate, solid-solution, cathode, (de)insertion
J094. "Reactive template synthesis of Li1.2Mn0.54Ni0.13Co0.13O2 nanorod cathode for Li-ion batteries: Influence of temperature
over structural and electrochemical properties",
M. Vivekanantha, C. Senthil, T. Kesavan, T. Partheeban, M. Navaneethan, B. Senthilkumar, P. Barpanda, M. Sasidharan,
Electrochimica Acta, 317, 398-407, 2019.
DOI: https://doi.org/10.1016/j.electacta.2019.05.095
Keywords: reactive template, nanorods, lithium-rich oxide, high specific capacity, rate capability
J093. "Sodium cobalt metaphosphate as an efficient oxygen evolution reaction catalyst in alkaline solution",
R. Gond, D.K. Singh, M. Eswaramoorthy, P. Barpanda,
Angewandte Chemie International Edition, 58(25), 8330-8335, 2019.
DOI: https://doi.org/10.1002/anie.201982561
Keywords: metaphosphate, combustion, oxygen evolution reaction, hydrogen economy
[Highlighted in Frontispiece Picture]
J092. "Low cost, fast, template free synthesis of nanoscale zinc spinels for energy storage and electrocatalytic applications",
A. Baby, B. Senthilkumar, P. Barpanda,
ACS Applied Energy Materials, 2(5), 3211-3219, 2019.
DOI: https://doi.org/10.1021/acsaem.9b00054
Keywords: spinel, combustion synthesis, aqueous Zn-ion battery, oxygen reduction reaction, electrocatalyst
J091. "Tavorite LiFePO4OH hydroxyphosphate as an anode for aqueous lithium-ion batteries",
L. Sharma, K. Nakamoto, S. Okada, P. Barpanda,
Journal of Power Sources, 429, 17-21, 2019.
DOI: https://doi.org/10.1016/j.jpowsour.2019.04.110
Keywords: aqueous Li-ion batteries, anode, tavorite, hydroxyphosphate, LiFePO4OH
J090. "An overview on nanostructured Li-based thin film micro-batteries",
A. Rambabu, S.B. Krupanidhi, P. Barpanda,
Proceedings of the Indian National Science Academy, 85(1), 121-142, 2019.
DOI: https://doi.org/10.16943/ptinsa/2018/49472
Keywords: all-solid-state micro-batteries, thin films, cathodes, anodes, solid electrolytes
[Invited Review]
J089. "An overview of mixed polyanionic cathode materials for sodium-ion batteries",
B. Senthilkumar, C. Murugesan, L. Sharma, S. Lochab, P. Barpanda,
Small Methods, 3(4), 1800253, 2019.
DOI: https://doi.org/10.1002/smtd.201800253
Keywords: capacity, cathodes, mixed polyanions, sodium-ion batteries, voltage
[Special Issue: A New Emerging Technology- Na-ion Batteries] [Invited Review]
[Highlighted in Back Cover Image]
J088. "Narsarsukite Na2TiOSi4O10 as a low voltage silicate anode for rechargeable Li-ion and Na-ion batteries",
A. Chaupatnaik, M. Srinivasan, P. Barpanda,
ACS Applied Energy Materials, 2(3), 2350-2355, 2019.
DOI: https://doi.org/10.1021/acsaem.8b01906
Keywords: intercalation, lithium-ion battery, Na2TiOSi4O10, narsarsukite, sodium-ion battery
J087. "Superior potassium-ion hybrid capacitor based on novel P3-type layered K0.45Mn0.5Co0.5O2 as high capacity cathode",
H.V. Ramasamy, B. Senthilkumar, P. Barpanda, Y.S. Lee,
Chemical Engineering Journal, 368, 235-243, 2019.
DOI: https://doi.org/10.1016/j.cej.2019.02.172
Keywords: potassium-ion capacitor, P3-K0.45Mn0.5Co0.5O2, energy density, potassium-ion intercalation, capacity
J086. "Ultrasonic sonochemical synthesis of Na0.44MnO2 insertion material for sodium-ion batteries",
G.S. Shinde, P.D. Nayak, V.S. Pranav, S.K. Jain, A. Pathak, S. Sanyal, J. Balachandran, P. Barpanda,
Journal of Power Sources, 416, 50-55, 2019.
DOI: https://doi.org/10.1016/j.jpowsour.2019.01.161
Keywords: Na-ion battery, cathode, Na0.44MnO2, sonochemical synthesis, capacity
[Special Issue related to IBA-2018 Meeting at Jeju Islands, South Korea]
J085. "Operando structural and electrochemical investigation of Li1.5V3O8 nanorods in Li-ion batteries",
T. Partheeban, T. Kesavan, M. Vivekanantha, B. Senthilkumar, P. Barpanda, M. Sasidharan,
ACS Applied Energy Materials, 2(1), 852-859, 2019.
DOI: https://doi.org/10.1021/acsaem.8b019015
Keywords: Lithium-ion batteries, cathode, Li1.5V3O8, nanorods, in-situ X-ray diffraction, capacity
J084. "In-situ neutron diffraction studies of LiCe(WO4)2 polymorphs: Phase transition and structure-property correlation",
A.K. Munirathnappa, D. Dwibedi, J. Hester, P. Barpanda, D. Swain, C. Narayana, N.G. Sundaram,
Journal of Physical Chemistry C, 123(2), 1041-1049, 2019.
DOI: https://doi.org/10.1021/acs.jpcc.8b09364
Keywords: Li-ion batteries, anodes, LiCe(WO4)2, neutron diffraction, phase transition, polymorphism
J083. "Diffusional and electrochemical investigation of combustion synthesized BaLi2Ti6O14 titanate anode
for rechargeable batteries",
A. Chaupatnaik, P. Barpanda,
Journal of Materials Research, 34(1), 158-168, 2019.
DOI: https://doi.org/10.1557/jmr.2018.250
Keywords: combustion synthesis, energy storage, Li
[Annual Issue: Early Career Scholars in Materials Science 2019]
J082. "Na2FePO4F fluorophosphate as positive insertion material for aqueous sodium-ion batteries",
L. Sharma, K. Nakamoto, R. Sakamoto, S. Okada, P. Barpanda,
ChemElectroChem, 6(2), 444-449, 2019.
DOI: https://doi.org/10.1002/celc.201801314
Keywords: aqueous sodium-ion batteries, cathode materials, fluorophosphates, Na2FePO4F, NaTi2(PO4)3 anode
J081. "Swift combustion synthesis of PbLi2Ti6O14 anode for lithium-ion batteries: Diffusional and electrochemical investigation",
A. Chaupatnaik, P. Barpanda,
Journal of the Electrochemical Society, 166(3), A5122-5130, 2019.
DOI: https://doi.org/10.1149/2.0191903jes
Keywords: Li-ion batteries, anode, titanate, PbLi2Ti6O14, combustion synthesis, diffusion
[Focus Issue related to IMLB-2018 Meeting at Kyoto, Japan]
J080. "Layered Na2Mn3O7 as a 3.1 V insertion material for Li-ion batteries",
K. Sada, B. Senthilkumar, P. Barpanda,
ACS Applied Energy Materials, 1(12), 6719-6724, 2018.
DOI: https://doi.org/10.1021/acsaem.8b01551
Keywords: capacity, intercalation mechanism, layered oxides, Li-ion batteries, Na2Mn3O7
J079. "Potassium-ion intercalation mechanism in layered Na2Mn3O7",
K. Sada, B. Senthilkumar, P. Barpanda,
ACS Applied Energy Materials, 1(10), 5410-5416, 2018.
DOI: https://doi.org/10.1021/acsaem.8b01016
Keywords: capacity, intercalation mechanism, layered oxides, PITT, potassium-ion battery
J078. "Revisiting the alluaudite NaMnFe2(PO4)3 sodium insertion material: Structural, diffusional and electrochemical insights",
D. Dwibedi, P.W. Jaschin, R. Gond, P. Barpanda,
Electrochimica Acta, 283, 850-857, 2018.
DOI: https://doi.org/10.1016/j.electacta.2018.06.178
Keywords: sodium-ion battery, alluaudite, combustion, bond valence site energy, conductivity
J077. "Ultra-rapid combustion synthesis of Na2FePO4F fluorophosphate host for Li-ion and Na-ion insertion",
L. Sharma, A. Bhatia, L. Assaud, S. Franger, P. Barpanda,
Ionics, 24(8), 2187-2192, 2018.
DOI: https://doi.org/10.1007/s11581-017-2376-3
Keywords: fluorophosphate, solution combustion, nanometric particles, capacity
[Special Issue: GARNET-2017 meeting at Pondicherry, Bharat]
J076. "Polyanionic insertion materials for sodium-ion batteries",
P. Barpanda, L. Lander, S. Nishimura, A. Yamada,
Advanced Energy Materials, 8(17), 1703055, 2018.
DOI: https://doi.org/10.1002/aenm.201703055
Keywords: batteries, electrodes, intercalation, polyanion, sodium
[Special Issue: Sodium-ion Batteries] [Invited Review]
J075. "Cubic sodium cobalt metaphosphate [NaCo(PO3)3] as a novel cathode material for sodium-ion batteries",
R. Gond, R. Prasada Rao, V. Pralong, O.I. Lebedev, S. Adams, P. Barpanda,
Inorganic Chemistry, 57(11), 6324-6332, 2018.
DOI: https://doi.org/10.1021/acs.inorgchem.8b00291
Keywords: sodium-ion batteries, cathode, metaphosphate, NaCo(PO3)3, bond valence site energy
J074. "Electrochemical and diffusional insights on combustion synthesized SrLi2Ti6O14 negative insertion material
for Li-ion batteries",
A. Dayamani, G.S. Shinde, A. Chaupatnaik, R. Prasada Rao, S. Adams, P. Barpanda,
Journal of Power Sources, 385, 122-129, 2018.
DOI: https://doi.org/10.1016/j.jpowsour.2018.03.021
Keywords: Li-ion battery, anodes, SrLi2Ti6O14, combustion, bond valence site energy
J073. "Preferentially oriented SrLi2Ti6O14 thin film anode for Li-ion micro-batteries fabricated by pulsed laser deposition",
A. Rambabu, B. Senthilkumar, A. Dayamani, S.B. Krupanidhi, P. Barpanda,
Electrochimica Acta, 269, 212-216, 2018.
DOI: https://doi.org/10.1016/j.electacta.2018.02.164
Keywords: thin-film batteries, pulsed laser deposition, Li-ion batteries, anodes, SrLi2Ti6O14
J072. "Earth-abundant alkali iron phosphates (AFePO4) as efficient electrocatalysts for oxygen reduction reaction in alkaline solution",
C. Murugesan, S. Lochab, B. Senthilkumar, P. Barpanda,
ChemCatChem, 10(5), 1122-1127, 2018.
DOI: https://doi.org/10.1002/cctc.201701423
Keywords: electrocatalysts, iron phosphates, maricite, oxygen reduction reaction, structure
J071. "Bifunctional electrocatalytic behaviour of sodium cobalt phosphates in alkaline solution",
R. Gond, S. Krishnakanth, B. Senthilkumar, P. Barpanda,
ChemElectroChem, 5(1), 153-158, 2018.
DOI: https://doi.org/10.1002/celc.201700873
Keywords: Na-air battery, bifunctional electrocatalyst, maricite, oxygen reduction reaction
J070. "In-situ deposition of Na2Ti6O13 thin film as anode for sodium-ion micro-batteries developed by pulsed laser deposition",
A. Rambabu, B. Senthilkumar, K. Sada, S.B. Krupanidhi, P. Barpanda,
Journal of Colloid and Interface Science, 514, 117-121, 2018.
DOI: https://doi.org/10.1016/j.jcis.2017.12.023
Keywords: pulsed laser deposition, thin-film, micro-batteries, Na2Ti6O13, sodium-ion batteries
J069. "Role of annealing temperature on cation ordering in hydrothermally prepared zinc aluminate (ZnAl2O4) spinel",
D. Dwibedi, M. Chinnasamy, M. Leskes, P. Barpanda,
Materials Research Bulletin, 98(10), 219-224, 2018.
DOI: https://doi.org/10.1016/j.materresbull.2017.10.010
Keywords: ceramics, solvothermal, Raman spectroscopy, X-ray diffraction, defects
J068. "Mechanistic study of Na-ion diffusion and small polaron formation in krohnkite Na2Fe(SO4)2.2H2O based cathode material",
T. Watcharatharapong, J. T-Thienprasert, P. Barpanda, R. Ahuja, S. Chakraborty,
Journal of Materials Chemistry A, 5(41), 21726-21739, 2017.
DOI: https://doi.org/10.1039/C7TA04508E
Keywords: Na-ion battery, krohnkite, Na2Fe(SO4)2.2H2O, diffusion, small hole polaron, DFT calculation
J067. "Electrochemical and diffusional investigation of Na2Fe(II)PO4F fluorophosphates sodium insertion material obtained
from Fe(III) precursor",
L. Sharma, P. Nayak, E. de la Llave, H. Chen, S. Adams, D. Aurbach, P. Barpanda,
ACS Applied Materials & Interfaces, 9(4), 34961-34969, 2017.
DOI: https://doi.org/10.1021/acsami.7b10637
Keywords: bond-valence site energy, combustion, fluorophosphate, Na-ion battery, Na2FePO4F
J066. "Electrochemical potassium-ion intercalation in NaxCoO2: A novel cathode material for potassium-ion batteries",
S. Krishnakanth, B. Senthilkumar, P. Barpanda,
Chemical Communications, 53(61), 8588-8591, 2017.
DOI: https://doi.org/10.1039/C7CC02791E
Keywords: potassium-ion batteries, intercalation, NaxCoO2, high rate capability, ex-situ XRD
J065. "Autocombustion synthesis of nanostructured Na2Ti6O13 negative insertion material for Na-ion batteries:
Electrochemical and diffusion mechanism",
S. Ghosh, A. Dayamani, B. Kishore, N. Munichandraiah, R. Prasada Rao, L.L. Wong, S. Adams, P. Barpanda,
Journal of the Electrochemical Society, 164(9), A1881-1886, 2017.
DOI: https://doi.org/10.1149/2.0641709jes
Keywords: autocombustion synthesis, BVSE mapping, Na batteries, Na2Ti6O13
J064. "Enabling the electrochemical activity in sodium iron metaphosphate [NaFe(PO3)3] sodium battery insertion materials:
Structural and electrochemical insights",
R. Gond, S.S. Meena, S.M. Yusuf, V. Shukla, N.K. Jena, R. Ahuja, S. Okada, P. Barpanda,
Inorganic Chemistry, 56(10), 5918-5929, 2017.
DOI: https://doi.org/10.1021/acs.inorgchem.7b00561
Keywords: Na batteries, metaphosphate, NaFe(PO3)3, Fe-redox activity, DFT calculation
J063. "Magnetic structure and properties of centrosymmetric twisted melilite K2CoP2O7",
M. Sale, M. Avdeev, Z. Mohamed, C.D. Ling, P. Barpanda,
Dalton Transactions, 46(19), 6409-6416, 2017.
DOI: https://doi.org/10.1039/C7DT00978J
Keywords: K2CoP2O7, melilite, neutron powder diffraction, ab-initio calculation, magnetic ordering
J062. "Na2.32Co1.84(SO4)3 as a new member of alluaudite family of high-voltage sodium battery cathode",
D. Dwibedi, R. Gond, A. Dayamani, R.B. Araujo, S. Chakraborty, R. Ahuja, P. Barpanda,
Dalton Transactions, 46(1), 55-63, 2017.
DOI: https://doi.org/10.1039/C6DT03767D
Keywords: Na-ion battery, alluaudite, Na2Co2(SO4)3, DFT, high-voltage cathode
[Highlighted in Inside Cover Page Image]
J061. "Porous, hollow Li1.2Mn0.53Ni0.13Co0.13O2 microspheres as a positive electrode material for Li-ion batteries",
S. Duraisamy, T. Penki Rao, B. Kishore, P. Barpanda, P.K. Nayak, D. Aurbach, N. Munichandraiah,
Journal of Solid State Electrochemistry, 21, 437-445, 2017.
DOI: https://doi.org/10.1007/s10008-016-3380-7
Keywords: sacrificial MnO2 template, hollow microspheres, Li-rich oxide, high discharge capacity, high rate capability
J060. "Sonochemical synthesis of nanostructured spinel Li4Ti5O12 negative insertion material for Li-ion and Na-ion batteries",
S. Ghosh, S. Mitra, P. Barpanda,
Electrochimica Acta, 222, 898-903, 2016.
DOI: https://doi.org/10.1016/j.electacta.2016.11.055
Keywords: Li4Ti5O12, anode, sonochemical synthesis, Li batteries, Na batteries
[Special issue related to the 19th Topical Meeting of International Society of Electrochemistry, Auckland, New Zealand]
J059. "Na2M2(SO4)3 (M= Fe, Mn, Co and Ni): Towards high voltage sodium battery applications",
R.B. Araujo, S. Chakraborty, P. Barpanda, R. Ahuja,
Physical Chemistry Chemical Physics, 18(14), 9658-9665, 2016.
DOI: https://doi.org/10.1039/C6CP00070C
Keywords: sodium-ion batteries, alluaudites, Na2M2(SO4)3, DFT calculations, electronic structure
J058. "Ionothermal synthesis of high-voltage alluaudite Na2+2xFe2-x(SO4)3 sodium insertion compound:
Structural, electronic and magnetic insights",
D. Dwibedi, C.D. Ling, R.B. Araujo, S. Chakraborty, S. Duraisamy, N. Munichandraiah, R. Ahuja, P. Barpanda,
ACS Applied Materials & Interfaces, 8(11), 6982-6991, 2016.
DOI: https://doi.org/10.1021/acsami.5b11302
Keywords: alluaudite, DFT, ionothermal synthesis, Na2Fe2(SO4)3, sodium-ion battery
J057. "Pursuit of sustainable iron-based positive insertion materials for sodium-ion batteries: Two case studies",
P. Barpanda,
Chemistry of Materials, 28(4), 1006-1011, 2016.
DOI: https://doi.org/10.1021/acs.chemmater.5b03926
Keywords: sodium-ion batteries, high energy density, oxides, polyanionic compounds, Fe-based cathodes
[Invited Perspective Article]|[Table of Content Image highlighted by editor]
J056. "Na2.44Mn1.79(SO4)3: A new member of alluaudite family of insertion compound for sodium ion batteries",
D. Dwibedi, R.B. Araujo, S. Chakraborty, P. Shanbogh, N. Sundaram, R. Ahuja, P. Barpanda,
Journal of Materials Chemistry A, 3(36), 18564-18571, 2015.
DOI: https://doi.org/10.1039/c5ta04527d
Keywords: Na-ion battery, alluaudite, Na2Mn2(SO4)3, DFT, high-voltage cathode
J055. "Role of fuel on cation disorder in magnesium aluminate (MgAl2O4) spinel prepared by combustion synthesis",
D. Dwibedi, M. Avdeev, P. Barpanda,
Journal of the American Ceramic Society, 98(9), 2908-2913, 2015.
DOI: https://doi.org/10.1111/jace.13705
Keywords: spinel, MgAl2O4, ordering, neutron diffraction, Raman spectroscopy
J054. "Insight into the limited electrochemical activity of NaVP2O7",
Y. Kee, N. Dimov, A. Staikov, P. Barpanda, Y.C. Lu, K. Minami, S. Okada,
RSC Advances, 5(80), 64991-64996, 2015.
DOI: https://doi.org/10.1039/c5ra12158b
Keywords: Na-ion battery, pyrophosphate, NaVP2O7, kinetics, energy barrier
[Themed Collection of Nanoscience and Nanotechnology in Electrochemistry]
J053. "Energy-savvy solid-state and sonochemical synthesis of lithium sodium titanate as an anode active material for Li-ion batteries",
S. Ghosh, Y. Kee, S. Okada, P. Barpanda,
Journal of Power Sources, 296, 276-281, 2015.
DOI: https://doi.org/10.1016/j.jpowsour.2015.07.057
Keywords: Li-ion battery, anode, titanium chemistry, sonochemical synthesis, nanomaterial
J052. "Lithium metal borate (LiMBO3) family of insertion materials for Li-ion batteries: A sneak peak",
P. Barpanda, D. Dwibedi, S. Ghosh, Y. Kee, S. Okada,
Ionics, 21(7), 1801-1812, 2015.
DOI: https://doi.org/10.1007/s11581-015-1463-6
Keywords: Li-ion battery, polyanion, borate, LiMBO3, polymorphism, capacity
[Invited Review]
J051. "Sulphate chemistry for high-voltage insertion materials: Synthetic, structural and electrochemical insights",
P. Barpanda,
Israel Journal of Chemistry, 55(5), 537-557, 2015.
DOI: https://doi.org/10.1002/ijch.201400157
Keywords: alkali metals, electrochemistry, polyanions, structure elucidation, sulfur
[Special issue on 'Next generation batteries: Materials and electrochemical systems']|[Invited Review]
J050. "An alluaudite Na2+2xFe2-x(SO4)3 (x = 0.2) derivative phase as an insertion host for lithium battery",
J. Ming, P. Barpanda, S. Nishimura, M. Okubo, A. Yamada,
Electrochemistry Communications, 51, 19-22, 2015.
DOI: https://doi.org/10.1016/j.elecom.2014.11.009
Keywords: lithium batteries, sodium batteries, cathode, alluaudite, oxidation
J049. "t-Na2VOP2O7: A 3.8 V pyrophosphate insertion material for sodium-ion batteries",
P. Barpanda, G. Liu, M. Avdeev, A. Yamada,
ChemElectroChem, 1(9), 1488-1491, 2014.
DOI: https://doi.org/10.1002/celc.201402095
Keywords: cations, electrochemistry, energy conversion, sodium, vanadium
[Highlighted in Inside Cover Page Image]
J048. "A 3.8 V earth-abundant sodium battery electrode",
P. Barpanda, G. Oyama, S. Nishimura, S.C. Chung, A. Yamada,
Nature Communications, 5:4358, 1-8, 2014.
DOI: https://doi.org/10.1038/ncomms5358
Keywords: sodium battery, cathode, alluaudite, high voltage operation
[Winner of The Ross Coffin Purdy Award-2016 by the American Ceramic Society]
J047. "Sodium-ion battery cathodes Na2FeP2O7 and Na2MnP2O7: Diffusion behavior for high rate performances",
J.M. Clark, P. Barpanda, A. Yamada, M.S. Islam,
Journal of Materials Chemistry A, 2(30), 11807-11812, 2014.
DOI: https://doi.org/10.1039/C4TA02383H
Keywords: sodium-ion battery, pyrophosphates, cathode, diffusion, rate kinetics
J046. "Structural, magnetic and electrochemical investigation of novel binary Na2-x(Fe1-yMny)P2O7 (0 < y < 1) pyrophosphate
compounds for rechargeable sodium-ion batteries",
P. Barpanda, G. Liu, Z. Mohamed, C.D. Ling, A. Yamada,
Solid State Ionics, 268, 305-311, 2014.
DOI: https://doi.org/10.1016/j.ssi.2014.03.011
Keywords: sodium-ion battery, pyrophosphate, Na2FeP2O7, Na2MnP2O7, solid-solution
[Special Issue: ICMAT-2013 Symposium A: Advanced Energy Storage Systems: Lithium Ion Batteries and Beyond]
J045. "Krohnkite-type Na2Fe(SO4)2.2H2O as a novel 3.25 V insertion compound for Na-ion batteries",
P. Barpanda, G. Oyama, C.D. Ling, A. Yamada,
Chemistry of Materials, 26(3), 1297-1299, 2014.
DOI: https://doi.org/10.1021/cm4033226
Keywords: sodium-ion battery, krohnkite, Na2FeSO4.2H2O, sulfate, synchrotron
J044. "Magnetic structure and properties of the rechargeable battery insertion compound Na2FePO4F",
M. Avdeev, C.D. Ling, T.T. Tan, S. Li, G. Oyama, A. Yamada, P. Barpanda,
Inorganic Chemistry, 53(2), 682-684, 2014.
DOI: https://doi.org/10.1021/ic402513d
Keywords: magnetic structure, fluorophosphate, Na2FePO4F, neutron powder diffraction, antiferromagnetic ordering
J043. "Sodium manganese fluorosulfate with a triplite structure",
P. Barpanda, C.D. Ling, G. Oyama, A. Yamada,
Acta Crystallographica, B69, 584-588, 2013.
DOI: https://doi.org/10.1107/S2052519213024093
Keywords: sodium-ion battery cathodes, fluorosulfates, triplite, disorder
J042. "General observation of Fe3+/Fe2+ redox couple close to 4 V in partially substituted Li2FeP2O7 pyrophosphate
solid-solution cathodes",
T. Ye, P. Barpanda, S. Nishimura, N. Furuta, S.C. Chung, A. Yamada,
Chemistry of Materials, 25(18), 3623-3629, 2013.
DOI: https://doi.org/10.1021/cm401547z
Keywords: lithium-ion battery, pyrophosphate, redox potential tunability, structural stabilization
J041. "Na2FeP2O7: A safe cathode for rechargeable sodium-ion batteries",
P. Barpanda, G. Liu, C.D. Ling, M. Tamaru, M. Avdeev, S.C. Chung, Y. Yamada, A. Yamada,
Chemistry of Materials, 25(17), 3480-3487, 2013.
DOI: https://doi.org/10.1021/cm401657c
Keywords: sodium-ion battery, cathode, Na2FeP2O7, NaFeP2O7, polymorphism, safety
J040. "Magnetic structures of NaFePO4 maricite and triphylite polymorphs for sodium-ion batteries",
M. Avdeev, Z. Mohamed, C.D. Ling, J. Lu, M. Tamaru, A. Yamada, P. Barpanda,
Inorganic Chemistry, 52(15), 8685-8693, 2013.
DOI: https://doi.org/10.1021/ic400870x
Keywords: magnetic structure, NaFePO4, polymorphism, triphylite, maricite
J039. "Demonstration of Co3+/Co2+ electrochemical activity in LiCoBO3 cathode at 4.0 V",
Y. Yamashita, P. Barpanda, Y. Yamada, A. Yamada,
ECS Electrochemistry Letters, 2(8), A75-A77, 2013.
DOI: https://doi.org/10.1149/2.003308eel
Keywords: Li-ion batteries, cathode, borate, LiCoBO3, high voltage
J038. "Neutron diffraction study of the Li-ion battery cathode Li2FeP2O7",
P. Barpanda, G. Rousse, T. Ye, C.D. Ling, Z. Mohamed, Y. Klein, A. Yamada,
Inorganic Chemistry, 52(6), 3334-3341, 2013.
DOI: https://doi.org/10.1021/ic302816w
Keywords: Li-ion batteries, Li2FeP2O7, magnetic structure, neutron diffraction, magnetic ordering
J037. "High-throughput solution combustion synthesis of high-capacity LiFeBO3 cathode",
P. Barpanda, Y. Yamashita, Y. Yamada, A. Yamada,
Journal of the Electrochemical Society, 160(5), A3095-A3099, 2013.
DOI: https://doi.org/10.1149/2.015305jes
Keywords: Li-ion batteries, cathode, borate, LiFeBO3, high capacity
[Focus Issue on 'Intercalation Compounds for Rechargeable Batteries']
J036. "A new polymorph of Na2MnP2O7 as a 3.6 V cathode material for sodium-ion batteries",
P. Barpanda, T. Ye, M. Avdeev, S.C. Chung, A. Yamada,
Journal of Materials Chemistry A, 1(13), 4194-4197, 2013.
DOI: https://doi.org/10.1039/C3TA10210F
Keywords: sodium batteries, pyrophosphate, Na2MnP2O7, cathode, polymorphism
J035. "A layer-structured Na2CoP2O7 pyrophosphate cathode for sodium-ion batteries",
P. Barpanda, J. Lu, T. Ye, M. Kajiyama, S.C. Chung, N. Yabuuchi, S. Komaba, A. Yamada,
RSC Advances, 3(12), 3857-3860, 2013.
DOI: https://doi.org/10.1039/C3RA23026K
Keywords: sodium batteries, pyrophosphate, Na2CoP2O7, cathode, layered material
J034. "Magnetic structure and properties of the Na2CoP2O7 pyrophosphate cathode for sodium-ion batteries:
A supersuperexchange-driven non-collinear antiferromagnet",
P. Barpanda, M. Avdeev, C.D. Ling, J. Lu, A. Yamada,
Inorganic Chemistry, 52(1), 395-401, 2013.
DOI: https://doi.org/10.1021/ic302191d
Keywords: pyrophosphate, Na2CoP2O7, magnetometry, neutron diffraction, antiferromagnet
J033. "Sodium iron pyrophosphate: A novel 3.0 V iron-based cathode for sodium-ion batteries",
P. Barpanda, T. Ye, S. Nishimura, S.C. Chung, Y. Yamada, M. Okubo, H. Zhou, A. Yamada,
Electrochemistry Communications, 24, 116-119, 2012.
DOI: https://doi.org/10.1016/j.elecom.2012.08.028
Keywords: Na-ion batteries, cathode, pyrophosphate, Na2FeP2O7
J032. "Observation of the highest Mn3+/Mn2+ redox potential of 4.45 V in a Li2MnP2O7 pyrophosphate cathode",
M. Tamaru, P. Barpanda, Y. Yamada, S. Nishimura, A. Yamada,
Journal of Materials Chemistry, 22(47), 24526-24529, 2012.
DOI: https://doi.org/10.1039/C2JM35260E
Keywords: Li-ion batteries, cathode, pyrophosphate, Li2MnP2O7, high voltage
J031. "High-voltage pyrophosphate cathodes",
P. Barpanda, S. Nishimura, A. Yamada,
Advanced Energy Materials, 2(7), 841-859, 2012.
DOI: https://doi.org/10.1002/aenm.201100772
Keywords: batteries, cathodes, pyrophosphates, polymorphism, high voltage
[Special Issue: Next Generation Battery Materials] [Invited Review]
J030. "Electrochemical redox mechanism in 3.5 V Li2-xFeP2O7 (0 < x < 1) pyrophosphate cathode",
D. Shimizu, S. Nishimura, P. Barpanda, A. Yamada,
Chemistry of Materials, 24(13), 2598-2603, 2012.
DOI: https://doi.org/10.1021/cm301337z
Keywords: Li-ion battery, pyrophosphates, X-ray diffraction, redox mechanism
J029. "Eco-efficient splash combustion synthesis of nanoscale pyrophosphate (Li2FeP2O7) positive-electrode using Fe(III) precursors",
P. Barpanda, T. Ye, S.C. Chung, Y. Yamada, S. Nishimura, A. Yamada,
Journal of Materials Chemistry, 22(27), 13455-13459, 2012.
DOI: https://doi.org/10.1039/C2JM32566G
Keywords: Li-ion battery, cathode, pyrophosphate, combustion synthesis, Li2FeP2O7
J028. "Polymorphs of LiFeSO4F as cathode materials for lithium ion battery- A first principle computational study",
S.C. Chung, P. Barpanda, S. Nishimura, Y. Yamada, A. Yamada,
Physical Chemistry Chemical Physics, 14(24), 8678-8682, 2012.
DOI: https://doi.org/10.1039/C2CP40489C
Keywords: lithium battery, cathode, fluorosulfate, LiFeSO4F, DFT study
J027. "Fe3+/Fe2+ redox couple approaching 4 V in Li2-x(Fe1-yMny)P2O7 pyrophosphate cathodes",
N. Furuta, S. Nishimura, P. Barpanda, A. Yamada,
Chemistry of Materials, 24(6), 1055-1061, 2012.
DOI: https://doi.org/10.1021/cm2032465
Keywords: lithium ion battery, cathode material, pyrophosphate, polyanionic compounds
J026. "Enabling the Li-ion conductivity of Li-metal fluorosulphates by ionic liquid grafting",
P. Barpanda, R. Dedryvere, M. Deschamps, C. Delacourt, M. Reynaud, A. Yamada, J.M. Tarascon,
Journal of Solid State Electrochemistry, 16(5), 1743-1751, 2012.
DOI: https://doi.org/10.1007/s10008-011-1598-y
Keywords: conductivity, fluorosulphates, ionic liquid grafting, solid electrolyte
[Special Issue: ICMAT-2011 Symposium N: Advanced Energy Storage Systems- from fundamentals to applications]
J025. "Synthesis and crystal chemistry of the NaMSO4F family (M = Mg, Fe, Co, Cu, Zn)",
M. Reynaud, P. Barpanda, G. Rousse, J.N. Chotard, B.C. Melot, N. Recham, J.M. Tarascon,
Solid State Sciences, 14(1), 15-20, 2012.
DOI: https://doi.org/10.1016/j.solidstatesciences.2011.09.004
Keywords: fluorosulphate, cathode, tavorite-like framework, ionic conductivity, battery
J024. "A 3.90 V iron-based fluorosulphate material for lithium-ion batteries crystallizing in the triplite structure",
P. Barpanda, M. Ati, B.C. Melot, G. Rousse, J.N. Chotard, M.L. Doublet, M.T. Sougrati, S.A. Corr, J.C. Jumas, J.M. Tarascon,
Nature Materials, 10(10), 772-779, 2011.
DOI: https://doi.org/10.1038/nmat3093
Keywords: lithium batteries, cathode, fluorosulphates, triplite, high voltage
J023. "Structural and electrochemical diversity in LiFe1-dZndSO4F solid solution: A Fe-based 3.9 V positive-electrode material",
M. Ati, B.C. Melot, G. Rousse, J.N. Chotard, P. Barpanda, J.M. Tarascon,
Angewandte Chemie International Edition, 50(45), 10574-10577, 2011.
DOI: https://doi.org/10.1002/anie.201104648
Keywords: batteries, electrochemistry, fluorosulfates, lithium, solid-state structures
[Highlighted as 'Hot Paper']
J022. "Structure, surface morphology and electrochemical properties of brominated activated carbons",
P. Barpanda, G. Fanchini, G.G. Amatucci,
Carbon, 49(7), 2538-2548, 2011.
DOI: https://doi.org/10.1016/j.carbon.2011.02.028
Keywords: supercapacitors, activated carbon, bromination, mechanical milling, pseudocapacitance
J021. "Direct and modified ionothermal synthesis of LiMnPO4 with tunable morphology for rechargeable Li-ion batteries",
P. Barpanda, K. Djellab, N. Recham, M. Armand, J.M. Tarascon,
Journal of Materials Chemistry, 21(27), 10143-10152, 2011.
DOI: https://doi.org/10.1039/C0JM04423G
Keywords: Li-ion batteries, LiMnPO4, ionothermal synthesis, morphology, capacity
[Themed Issue on 'Advanced Materials for Lithium Batteries']
[Highlighted as 'Hot Paper'] [Highlighted with 'Inside Cover Page Image']
J020. "LiZnSO4F made in an ionic liquid: A ceramic electrolyte composite for solid-state lithium batteries",
P. Barpanda, J.N. Chotard, C. Delacourt, M. Reynaud, Y. Filinchuk, M. Armand, M. Deschamps, J.M. Tarascon,
Angewandte Chemie International Edition, 50(11), 2526-2531, 2011.
DOI: https://doi.org/10.1002/anie.201006331
Keywords: ceramics, electrolytes, fluorosulfates, ionic liquids, lithium batteries
[Highlighted as 'Hot Paper']
J019. "Magnetisation reversal in cylindrical nickel nanobars involving magnetic vortex structure: A micromagnetic study",
P. Barpanda,
Physica B: Condensed Matter, 406(6-7), 1336-1340, 2011.
DOI: https://doi.org/10.1016/j.physb.2011.01.029
Keywords: cylindrical nanobars, micromagnetics, inversion symmetry, coercivity, nickel
J018. "Structural and electrochemical modification of graphitic carbons by vapor-phase iodine-incorporation",
P. Barpanda, K. Djellab, R.K. Sadangi, A.K. Sahu, D. Roy, K. Sun,
Carbon, 48(14), 4178-4189, 2010.
DOI: https://doi.org/10.1016/j.carbon.2010.07.038
Keywords: supercapacitors, graphite, iodine, ordering, capacitance
J017. "Structural, transport, and electrochemical investigation of novel AMSO4F (A= Na, Li; M = Fe, Co, Ni, Mn)
metal fluorosulphates prepared using low temperature synthesis routes",
P. Barpanda, J.N. Chotard, N. Recham, C. Delacourt, M. Ati, L. Dupont, M. Armand, J.M. Tarascon,
Inorganic Chemistry, 49(16), 7401-7413, 2010.
DOI: https://doi.org/10.1021/ic100583f
Keywords: batteries, cathodes, fluorosulphates, low temperature synthesis, conductivity
J016. "Fluorosulfate positive electrodes for Li-ion batteries made via a solid-state dry process",
M. Ati, M.T. Sougrati, N. Recham, P. Barpanda, J.B. Leriche, M. Courty, M. Armand, J.C. Jumas, J.M. Tarascon,
Journal of the Electrochemical Society, 157(9), A1007-A1015, 2010.
DOI: https://doi.org/10.1149/1.3457435
Keywords: ball milling, electrochemical electrodes, iron compounds, Mossbauer effect, secondary cells
J015. "Synthesis, structural, and transport properties of novel bihydrated fluorosulfates NaMSO4F.2H2O (M = Fe, Co and Ni)",
M. Ati, L. Dupont, N. Recham, J.N. Chotard, W. Walker, C. Davoisne, P. Barpanda, V. Sarou-Kanian, M. Armand, J.M. Tarascon,
Chemistry of Materials, 22(13), 4062-4068, 2010.
DOI: https://doi.org/10.1149/1.3457435
Keywords: sodium insertion materials, bihydrated fluorosulfates, NaMSO4F.2H2O, uklonskovite, conductivity
J014. "Structure and electrochemical properties of novel mixed Li(Fe1-xMx)SO4F (M = Co, Ni, Mn) phases fabricated by
low temperature ionothermal synthesis",
P. Barpanda, N. Recham, J.N. Chotard, K. Djellab, W. Walker, M. Armand, J.M. Tarascon,
Journal of Materials Chemistry, 20(9), 1659-1668, 2010.
DOI: https://doi.org/10.1039/B922063A
Keywords: Li-ion batteries, fluorosulphates, tavorite, ionic liquids, solid solution
[Highlighted as 'Cover Page Image']
J013. "Hunting for better Li-based electrode materials via low temperature inorganic synthesis",
J.M. Tarascon, N. Recham, M. Armand, J.N. Chotard, P. Barpanda, W. Walker, L. Dupont,
Chemistry of Materials, 22(3), 724-739, 2010.
DOI: https://doi.org/10.1021/cm9030478
Keywords: batteries, lithium insertion materials, low temperature synthesis, high voltage, capacity
[Special Issue: 'Materials Chemistry for Energy Conversion'] ['Cover Page Image']
J012. "Fabrication, physical and electrochemical investigation of microporous carbon polyiodide nanocomposites",
P. Barpanda, Y. Li, F. Cosandey, S. Rangan, R.A. Bartynski, G.G. Amatucci,
Journal of the Electrochemical Society, 156(11), A873-A885, 2009.
DOI: https://doi.org/10.1149/1.3212851
Keywords: crystal morphology, nanocomposites, porous materials, X-ray diffraction, Raman spectroscopy
[Highlighted in Virtual Journal of Nanoscale Science and Technology, 20(13), 28 Sep 2009]
J011. "The role of magnetic vortex formation in chains of spherical FeNi nanoparticles: A micromagnetic study",
P. Barpanda, M.R. Scheinfein, T. Kasama, R.E. Dunin-Borkowski,
Japanese Journal of Applied Physics, 48(10), 103002(1-6), 2009.
DOI: https://doi.org/10.1143/JJAP.48.103002
Keywords: chain-of-sphere model, permalloy, magnetic domains, vortex, micromagnetic simulation
J010. "Micromagnetics of magnetisation reversal mechanism in Permalloy chain-of-sphere structure with magnetic vortices",
P. Barpanda,
Computational Materials Science, 45(2), 240-246, 2009.
DOI: https://doi.org/10.1016/j.commatsci.2008.09.014
Keywords: micromagnetics, magnetic vortex, reversal mechanism, coercivity, Permalloy
J009. "Sliding wear behaviour of an epoxy system reinforced with particulate fly ash filler",
P. Barpanda, S.M. Kulkarni, Kishore,
Advanced Composites Letters, 18(6), 211-217, 2009.
DOI: https://doi.org/10.1177/096369350901800603
Keywords: sliding wear, pin-on-disk test, polymer-matrix composites, epoxy, fly ash
J008. "Fabrication, structure and electrochemistry of iodated microporous carbons of low mesoporosity",
P. Barpanda,
The Electrochemical Society Interface, 16(4), 57-58, 2007.
DOI: https://doi.org/10.xxx/xxxx
Keywords: activated carbon, halidation, microporous materials, capacity, supercapacitors
[Report on 2017 Colin G. Garfield ECS Summer Fellowship]
J007. "The physical and electrochemical characterization of vapor phase iodated activated carbons",
P. Barpanda, G. Fanchini, G.G. Amatucci,
Electrochimica Acta, 52(24), 7136-7147, 2007.
DOI: https://doi.org/10.1016/j.electacta.2007.05.051
Keywords: activated carbon, iodine, EDLC, non-Faradaic, non-aqueous
J006. "Physical and electrochemical properties of iodine-modified activated carbons",
P. Barpanda, G. Fanchini, G.G. Amatucci,
Journal of the Electrochemical Society, 154(5), A467-A476, 2007.
DOI: https://doi.org/10.1149/1.2714313
Keywords: carbon, nanostructured materials, electrochemical electrodes, materials preparation
J005. "Evolution and propagation of magnetic vortices in chains of Permalloy nanospheres",
P. Barpanda, T. Kasama, M.R. Scheinfein, R.E. Dunin-Borkowski, A.S. Arrott,
Journal of Applied Physics, 99(8), 08G103(1-3), 2006.
DOI: https://doi.org/10.1063/1.2171957
Keywords: chain-of-spheres, Permalloy, magnetic vortices, domain switching, micromagnetic simulation
J004. "Chemically induced order disorder transition in magnesium aluminium spinel",
P. Barpanda, S.K. Behera, P.K. Gupta, S.K. Pratihar, S. Bhattacharya,
Journal of the European Ceramic Society, 26(13), 2603-2609, 2006.
DOI: https://doi.org/10.1016/j.jeurceramsoc.2005.04.032
Keywords: X-ray methods, spectroscopy, chemical preparation, spinels, MgAl2O4
J003. "Off-axis electron holography of pseudo-spin-valve thin-film magnetic elements",
T. Kasama, P. Barpanda, R.E. Dunin-Borkowski, S. Newcomb, F. Castano, C.A. Ross,
Journal of Applied Physics, 98(1), 013903(1-7), 2005.
DOI: https://doi.org/10.1063/1.1943511
Keywords: pseudo-spin-valves, magnetic switching, electron holography, micromagnetic simulation, hysteresis
J002. "Compression strength of saline water-exposed epoxy system containing fly ash particles",
Kishore, P. Barpanda, S.M. Kulkarni,
Journal of Reinforced Plastics and Composites, 24(15), 1567-1576, 2005.
DOI: https://doi.org/10.1177/0731684405050390
Keywords: epoxy, fly ash, saline water exposure, compression strength, fractography
J001. "Synthesis of magnesium-aluminium spinel from autoignition of citrate-nitrate gel",
S.K. Behera, P. Barpanda, S.K. Pratihar, S. Bhattacharya,
Materials Letters, 58(9), 1451-1455, 2004.
DOI: https://doi.org/10.1016/j.matlet.2003.10.004
Keywords: autoignition, citrate-nitrate gel, black ash, order-disorder, Mag-Al spinel